Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
4th → a, 2nd → b, ab=2+4n
Jump(0,2) ≤ 1
5th → a, 2nd → b, a+b=1+6n
⟨⋯ 6 ⋯ 4 ⋯⟩
⛔Avoid
6th|5th|4th|3rd|1st → 0
6th|5th|2nd|0th → 3
{p4, p3, p1} = ? + {0,2,3}
#125034_v2.6
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 5 │ │ │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 5 │ │ │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 5 │ 3 │ │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 5 │ 3 │ 6 │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 5 │ 3 │ 6 │ 2 │ 4 │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-08-20 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. By ⛔「6th|5th|4th|3rd|1st → 0」, we have 0 = [2nd] | [0th]. We need [2nd] != 0 in order to match ✅「4th → a, 2nd → b, ab=2+4n」, so it is 0 = [0th]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, by ✅「Jump(0,2) ≤ 1」, we have 2 = [2nd] | [1st]. (1) We claim that 2 = [2nd]. ------------------------------ For, suppose on the contrary 2 = [1st]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ │ 2 │ 0 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, by ✅「5th → a, 2nd → b, a+b=1+6n」, one of the following holds: (1.1) {[5th], [2nd]} = {3,4}; (1.2) {[5th], [2nd]} = {1,6}. Observe that in order to avoid ⛔「6th|5th|2nd|0th → 3」, case (1.1) does not hold. Therefore, case (1.2) holds. Two possibilities follow: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (1.3) │ │ 1 │ │ │ 6 │ 2 │ 0 │ ├───┼───┼───┼───┼───┼───┼───┤ (1.4) │ │ 6 │ │ │ 1 │ 2 │ 0 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ However, this is a contradiction because if case (1.3) holds, then we cannot match ✅「⟨⋯ 6 ⋯ 4 ⋯⟩」, while if case (1.4) holds, then we cannot match ✅「4th → a, 2nd → b, ab=2+4n」. ------------------------------ We have verified our claim in (1). Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 2 │ │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, it follows from ✅「5th → a, 2nd → b, a+b=1+6n」 that [5th] = 5: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 5 │ │ │ 2 │ │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Let S := {p4, p3, p1}. Observe that by ⛔「6th|5th|2nd|0th → 3」 and ✅「⟨⋯ 6 ⋯ 4 ⋯⟩」, we have 3 ∈ S and 4 ∈ S. So, to avoid ⛔「{p4, p3, p1} = ? + {0,2,3}」, we need 1 ∉ S. It follows that 1 = [6th]: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 5 │ │ │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 5 │ │ │ 2 │ │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, note that there is only one way to match ✅「4th → a, 2nd → b, ab=2+4n」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 5 │ │ │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 5 │ 3 │ │ 2 │ │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, in view of ✅「⟨⋯ 6 ⋯ 4 ⋯⟩」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 5 │ 3 │ │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 5 │ 3 │ 6 │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 5 │ 3 │ 6 │ 2 │ 4 │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.6
No comments:
Post a Comment