Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
1st → 1|5
⟨ ⁴ᵗʰ↑ ³ʳᵈ↑ ⟩ after 2×⟨←⟩
5th → a, 2nd → b, a+b=0+4n
⟨⋯ 4 ⋯ a ⋯⟩, a = 1|2|5
{p5, p3, p0} = ? + {0,1,2}
⛔Avoid
⟨ ⁵ᵗʰa ²ⁿᵈb ¹ˢᵗc ⟩, (abc)₁₀ ≤ 231
#125034_v2.6
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ 3 │ │ │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ │ │ 1 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 0 │ │ 1 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 0 │ 4 │ 1 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 0 │ 4 │ 1 │ 5 │ 2 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-07-26 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. (1) We first show that [1st] = 5. ------------------------------ If this is not the case, then by ✅「1st → 1|5」, we have [1st] = 1. It then follows from ✅「⟨ ⁴ᵗʰ↑ ³ʳᵈ↑ ⟩ after 2×⟨←⟩」 that [3rd] = 0: ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3▲│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ 1 │ │ ├───┼───┼───┼───┼───┼───┤ │ │ │ 0 │ │ 1 │ │ └───┴───┴───┴───┴───┴───┘ Combining this with ✅「{p5, p3, p0} = ? + {0,1,2}」, we have { [5th], [3rd], [0th] } = {0,1,2}: ┌───┬───┬───┬───┬───┬───┐ │*5 │4th│*3 │2nd│1st│*0 │ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ ▬ │ │ 0 │ │ 1 │ ▬ │ └───┴───┴───┴───┴───┴───┘ A fortiori, 1 ∈ { [5th], [3rd], [0th] }. This is a contradiction, however, as we have already placed 1 at 1st. ------------------------------ We have verified (1). Accordingly, we get ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ 5 │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 0 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ To proceed, observe that ✅「5th → a, 2nd → b, a+b=0+4n」 implies [5th] + [2nd] = 4. We also need [5th] >= 2, in view of ⛔「⟨ ⁵ᵗʰa ²ⁿᵈb ¹ˢᵗc ⟩, (abc)₁₀ ≤ 231」. So, there are two possibilities: (2) ([5th], [2nd]) = (4,0); (3) ([5th], [2nd]) = (3,1). Note that if case (2) holds: ┌───┬───┬───┬───┬───┬───┐ │ 5▲│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ │ │ 0 │ 5 │ │ └───┴───┴───┴───┴───┴───┘ then we cannot match ✅「⟨ ⁴ᵗʰ↑ ³ʳᵈ↑ ⟩ after 2×⟨←⟩」. Therefore, case (3) holds, and we get ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ 3 │ │ │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ │ │ 1 │ 5 │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 0 │ │ 4 │ └───┴───┴───┴───┴───┴───┘ Then, to match ✅「⟨ ⁴ᵗʰ↑ ³ʳᵈ↑ ⟩ after 2×⟨←⟩」, we need [4th] = 0: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ │ │ 1 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 0 │ │ 1 │ 5 │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ Finally, as ✅「⟨⋯ 4 ⋯ a ⋯⟩, a = 1|2|5」 implies 4 is not at the right corner, we finish by ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3■│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 0 │ │ 1 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 0 │ 4 │ 1 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 0 │ 4 │ 1 │ 5 │ 2 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.6
No comments:
Post a Comment