Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ ? ⋯ 1 ⋯ (?+6)⟩
max ⊢0⊣ ≥ 3
3rd → a, 2nd → b, ab=5+6n
⟨⋯ Perm(0,1,2) ⋯⟩
⛔Avoid
⟨ ¹ˢᵗa ⁰ᵗʰb ⟩, (ab)₁₀ ≥ 43
#125034_v2.5
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ 1 │ │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ 1 │ 5 │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ │ 1 │ 5 │ 3 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ │ │ 1 │ 5 │ 3 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 0 │ │ 1 │ 5 │ 3 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 0 │ 2 │ 1 │ 5 │ 3 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-07-23 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, the first step follows from ✅「⟨⋯ ? ⋯ 1 ⋯ (?+6)⟩」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ To proceed, observe that ✅「3rd → a, 2nd → b, ab=5+6n」 implies [3rd] * [2nd] = 5. Therefore, {[3rd], [2nd]} = {1,5}. Actually we have ([3rd], [2nd]) = (1,5). For, if on the contrary ([3rd], [2nd]) = (5,1): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ 5 │ 1 │ │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ then we cannot match ✅「⟨⋯ Perm(0,1,2) ⋯⟩」, which is a contradiction. So we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ 1 │ │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ 1 │ 5 │ │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 3 │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, note that to match ✅「⟨⋯ Perm(0,1,2) ⋯⟩」, we need ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ ▬ │ ▬ │ 1 │ 5 │ │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ where "▬" are occupied by 0,2. As a consequence, {[6th], [1st]} = {3,4}. To avoid ⛔「⟨ ¹ˢᵗa ⁰ᵗʰb ⟩, (ab)₁₀ ≥ 43」, we need [1st] != 4. It follows that ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ 1 │ 5 │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ │ 1 │ 5 │ 3 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ │ │ 1 │ 5 │ 3 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, in view of ✅「max ⊢0⊣ ≥ 3」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 4 │ │ │ 1 │ 5 │ 3 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 0 │ │ 1 │ 5 │ 3 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 0 │ 2 │ 1 │ 5 │ 3 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.5
No comments:
Post a Comment