Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
Jump(3,5) = 1
⟨? ⋯ 0 (?+3) ⋯ 4 ⋯⟩ (?≠0)
Sim⟨ ⁶ᵗʰ0 ⁵ᵗʰ6 ⁴ᵗʰ5 ³ʳᵈ1 ²ⁿᵈ4 ¹ˢᵗ3 ⁰ᵗʰ2 ⟩ = 1
3rd → a, 0th → b, a+b=3+5n
#125034_v2.5
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ 0 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ 0 │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ 0 │ 5 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ │ │ 0 │ 5 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ │ │ 0 │ 5 │ 4 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 6 │ │ 0 │ 5 │ 4 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 6 │ 1 │ 0 │ 5 │ 4 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-07-09 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Note that by ✅「⟨? ⋯ 0 (?+3) ⋯ 4 ⋯⟩ (?≠0)」, we have (1) [6th] = 1|2|3. On the other hand, by ✅「3rd → a, 0th → b, a+b=3+5n」, we have (2) a + b = 3|8, where a := [3rd] and b := [0th]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ a │ │ │ b │ └───┴───┴───┴───┴───┴───┴───┘ Note that ✅「Jump(3,5) = 1」 implies {a,b} != {3,5}. So, one of the following holds: (i) {a,b} = {0,3}; (ii) {a,b} = {1,2}; (iii) {a,b} = {2,6}. (3) We show that (i) holds actually. ------------------------------ (3.1) If (ii) holds, then by (1), we have [6th] = 3: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ │ │ a │ │ │ b │ └───┴───┴───┴───┴───┴───┴───┘ Then, using ✅「Jump(3,5) = 1」, we get [4th] = 5: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ │ 5 │ a │ │ │ b │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ It is a contradiction, however, as we cannot match ✅「⟨? ⋯ 0 (?+3) ⋯ 4 ⋯⟩ (?≠0)」. (3.2) Else, suppose (iii) holds. By (1), we have [6th] = 1|3. Actually [6th] != 3, for otherwise using ✅「Jump(3,5) = 1」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ │ │ a │ │ │ b │ ├───┼───┼───┼───┼───┼───┼───┤ │ 3 │ │ 5 │ a │ │ │ b │ └───┴───┴───┴───┴───┴───┴───┘ and we cannot match ✅「⟨? ⋯ 0 (?+3) ⋯ 4 ⋯⟩ (?≠0)」 regardless of (a,b) = (2,6) or (6,2). So, we have [6th] = 1 when {a,b} = {2,6}: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 1 │ │ │ a │ │ │ b │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「⟨? ⋯ 0 (?+3) ⋯ 4 ⋯⟩ (?≠0)」, we need 0,4 to be adjacent. This cannot be satisfied, however, if ✅「Jump(3,5) = 1」 is matched as well. So, we again have a contradiction. ------------------------------ We have verified our claim in (3). Accordingly, we have {a,b} = {0,3}. As ✅「⟨? ⋯ 0 (?+3) ⋯ 4 ⋯⟩ (?≠0)」 implies that 0 is not at the right corner, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ 0 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ 0 │ │ │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ It then follows from ✅「Jump(3,5) = 1」 that [2nd] = 5: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ 0 │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ 0 │ 5 │ │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Using ✅「⟨? ⋯ 0 (?+3) ⋯ 4 ⋯⟩ (?≠0)」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ 0 │ 5 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ │ │ 0 │ 5 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ │ │ 0 │ 5 │ 4 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to match ✅「Sim⟨ ⁶ᵗʰ0 ⁵ᵗʰ6 ⁴ᵗʰ5 ³ʳᵈ1 ²ⁿᵈ4 ¹ˢᵗ3 ⁰ᵗʰ2 ⟩ = 1」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ │ 0 │ 5 │ 4 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 6 │ │ 0 │ 5 │ 4 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 6 │ 1 │ 0 │ 5 │ 4 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.5
No comments:
Post a Comment