Web link

2024-06-25 Q1(m=6)

Rearrange the digits in ⟨1263045⟩ to meet the rules below.

⟨6th 5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨   ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc     ⟩, a > b > c > d
⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)

⛔Avoid
⟦0,2⟧ ∋ 5
⟨       ³ʳᵈ↓ ²ⁿᵈ↓     ⟩ after 3×⟨←⟩
⟨⋯ 6 ⋯ a ⋯⟩, a = 3|5
⟨⋯ 2 ⋯ a ⋯⟩, a = 1|3|6
⟨         ²ⁿᵈa ¹ˢᵗb   ⟩, min⟦a,b⟧ = 0

#125034_v2.5



       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │ 6 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │ 5 │ 6 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ 3 │   │ 5 │ 6 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 3 │ 1 │ 5 │ 6 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 3 │ 1 │ 5 │ 6 │   │   │ 0 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 3 │ 1 │ 5 │ 6 │ 2 │   │ 0 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 3 │ 1 │ 5 │ 6 │ 2 │ 4 │ 0 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2024-06-25 Q1(m=6)
═══════════════════════════

Notation: if nth -> a, then we write [nth] = a.

Firstly, we consider where to place 6. It is the maximum digit, so ✅「⟨   ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc     ⟩, a > b > c > d」 implies that

(1) 6 = [6th] | [3rd] | [1st] | [0th].

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ ▬ │   │   │ ▬ │   │ ▬ │ ▬ │
└───┴───┴───┴───┴───┴───┴───┘

Note that by ✅「⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)」, it is not at 6th. It is not at 0th as well, in view of ⛔「⟨⋯ 2 ⋯ a ⋯⟩, a = 1|3|6」. Therefore,

(2) 6 = [3rd] | [1st].

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │ ▬ │   │ ▬ │   │
└───┴───┴───┴───┴───┴───┴───┘

(2.1) We show that 6 = [3rd] actually.

------------------------------

For, suppose on the contrary 6 = [1st]:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │   │   │ 6 │   │
└───┴───┴───┴───┴───┴───┴───┘

Then, to avoid ⛔「⟨⋯ 2 ⋯ a ⋯⟩, a = 1|3|6」, we need

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │   │   │ 6 │ 2 │
└───┴───┴───┴───┴───┴───┴───┘

Now we determine the position of 0. By ✅「⟨   ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc     ⟩, a > b > c > d」, it is at 6th or 5th:

┌───┬───┬───┬───┬───┬───┬───┐
│*6 │*5 │4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ - │ - │   │   │   │ 6 │ 2 │
└───┴───┴───┴───┴───┴───┴───┘

As we need to avoid ⛔「⟦0,2⟧ ∋ 5」, we get 0 = [5th]. The preceding pattern then implies [6th] = 5:

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │   │   │ 6 │ 2 │
├───┼───┼───┼───┼───┼───┼───┤
│ 5 │ 0 │   │   │   │ 6 │ 2 │
└───┴───┴───┴───┴───┴───┴───┘

This is a contradiction, however, as we cannot match ✅「⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)」 now.

------------------------------

We have verified our claim in (2.1). Accordingly, we get our first step:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │ 6 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Next, note that by ⛔「⟨⋯ 6 ⋯ a ⋯⟩, a = 3|5」, 3 and 5 are at the left of 6. We proceed to consider their positions.

We start with 5. Using ✅「⟨   ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc     ⟩, a > b > c > d」 and ✅「⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)」, we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │ 6 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │ 5 │ 6 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 3 │ 0 │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

For the position of 3, the two possibilities are:

(3) 3 = [6th] | [5th].

(3.1) We claim that indeed 3 = [6th].

For, if on the contrary 3 = [5th], then in view of ✅「⟨   ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc     ⟩, a > b > c > d」, we get the position of 4 as well:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5▲│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 3 │ 5 │ 6 │   │   │   │
├───┼───┼───┼───┼───┼───┼───┤
│   │ 3 │ 5 │ 6 │ 4 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

This is a contradiction, however, as we cannot avoid ⛔「⟨       ³ʳᵈ↓ ²ⁿᵈ↓     ⟩ after 3×⟨←⟩」 now.

We have verified our claim in (3.1). Accordingly, we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │ 6■│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │ 5 │ 6 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ 3 │   │ 5 │ 6 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │   │ 0 │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

Then, by ✅「⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)」, we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 3 │   │ 5 │ 6 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 3 │ 1 │ 5 │ 6 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 0 │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

Note that to avoid ⛔「⟨         ²ⁿᵈa ¹ˢᵗb   ⟩, min⟦a,b⟧ = 0」, we need

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 3 │ 1 │ 5 │ 6 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 3 │ 1 │ 5 │ 6 │   │   │ 0 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨       ³ʳᵈ↓ ²ⁿᵈ↓     ⟩ after 3×⟨←⟩」, we finish by

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│ 2■│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 3 │ 1 │ 5 │ 6 │   │   │ 0 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 3 │ 1 │ 5 │ 6 │ 2 │   │ 0 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 3 │ 1 │ 5 │ 6 │ 2 │ 4 │ 0 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.5

No comments:

Post a Comment