Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc ⟩, a > b > c > d
⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)
⛔Avoid
⟦0,2⟧ ∋ 5
⟨ ³ʳᵈ↓ ²ⁿᵈ↓ ⟩ after 3×⟨←⟩
⟨⋯ 6 ⋯ a ⋯⟩, a = 3|5
⟨⋯ 2 ⋯ a ⋯⟩, a = 1|3|6
⟨ ²ⁿᵈa ¹ˢᵗb ⟩, min⟦a,b⟧ = 0
#125034_v2.5
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 5 │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ │ 5 │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 1 │ 5 │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 1 │ 5 │ 6 │ │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 1 │ 5 │ 6 │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 1 │ 5 │ 6 │ 2 │ 4 │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-06-25 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Firstly, we consider where to place 6. It is the maximum digit, so ✅「⟨ ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc ⟩, a > b > c > d」 implies that (1) 6 = [6th] | [3rd] | [1st] | [0th]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ ▬ │ │ │ ▬ │ │ ▬ │ ▬ │ └───┴───┴───┴───┴───┴───┴───┘ Note that by ✅「⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)」, it is not at 6th. It is not at 0th as well, in view of ⛔「⟨⋯ 2 ⋯ a ⋯⟩, a = 1|3|6」. Therefore, (2) 6 = [3rd] | [1st]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ ▬ │ │ ▬ │ │ └───┴───┴───┴───┴───┴───┴───┘ (2.1) We show that 6 = [3rd] actually. ------------------------------ For, suppose on the contrary 6 = [1st]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ │ 6 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, to avoid ⛔「⟨⋯ 2 ⋯ a ⋯⟩, a = 1|3|6」, we need ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ │ 6 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ Now we determine the position of 0. By ✅「⟨ ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc ⟩, a > b > c > d」, it is at 6th or 5th: ┌───┬───┬───┬───┬───┬───┬───┐ │*6 │*5 │4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ - │ - │ │ │ │ 6 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ As we need to avoid ⛔「⟦0,2⟧ ∋ 5」, we get 0 = [5th]. The preceding pattern then implies [6th] = 5: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ │ │ │ 6 │ 2 │ ├───┼───┼───┼───┼───┼───┼───┤ │ 5 │ 0 │ │ │ │ 6 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ This is a contradiction, however, as we cannot match ✅「⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)」 now. ------------------------------ We have verified our claim in (2.1). Accordingly, we get our first step: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ 6 │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, note that by ⛔「⟨⋯ 6 ⋯ a ⋯⟩, a = 3|5」, 3 and 5 are at the left of 6. We proceed to consider their positions. We start with 5. Using ✅「⟨ ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc ⟩, a > b > c > d」 and ✅「⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 5 │ 6 │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ For the position of 3, the two possibilities are: (3) 3 = [6th] | [5th]. (3.1) We claim that indeed 3 = [6th]. For, if on the contrary 3 = [5th], then in view of ✅「⟨ ⁵ᵗʰd ⁴ᵗʰb ³ʳᵈa ²ⁿᵈc ⟩, a > b > c > d」, we get the position of 4 as well: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 3 │ 5 │ 6 │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ │ │ 3 │ 5 │ 6 │ 4 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ This is a contradiction, however, as we cannot avoid ⛔「⟨ ³ʳᵈ↓ ²ⁿᵈ↓ ⟩ after 3×⟨←⟩」 now. We have verified our claim in (3.1). Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 5 │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ │ 5 │ 6 │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, by ✅「⟨? ⋯ 1 ⋯ (?+2) ⋯⟩ (?≠1)」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ │ 5 │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 1 │ 5 │ 6 │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Note that to avoid ⛔「⟨ ²ⁿᵈa ¹ˢᵗb ⟩, min⟦a,b⟧ = 0」, we need ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 1 │ 5 │ 6 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 1 │ 5 │ 6 │ │ │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨ ³ʳᵈ↓ ²ⁿᵈ↓ ⟩ after 3×⟨←⟩」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 1 │ 5 │ 6 │ │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 1 │ 5 │ 6 │ 2 │ │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 1 │ 5 │ 6 │ 2 │ 4 │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.5
No comments:
Post a Comment