Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
6th → a, 0th → b, a+b=4
5th|4th|3rd → 3
4th → a, 1st → b, ab=3+4n
⛔Avoid
5th → 2|5
min ⊢4⊣ = 4
Jump(1,6) ≥ 2
#125034_v2.5
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 3 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 3 │ │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ 3 │ │ 2 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 4 │ │ 3 │ │ 2 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ │ 3 │ │ 2 │ 5 │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 1 │ 3 │ │ 2 │ 5 │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 1 │ 3 │ 6 │ 2 │ 5 │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-06-18 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. To begin with, observe that ✅「4th → a, 1st → b, ab=3+4n」 implies the product concerned is 3 or 15. Therefore, (1) {[4th],[1st]} = {1,3} | {3,5}. A fortiori, 3 = [4th] | [1st]. Combining this with ✅「5th|4th|3rd → 3」, we get 3 = [4th] as our first step. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 3 │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, note that (1) becomes (2) [1st] = 1|5, and that ✅「6th → a, 0th → b, a+b=4」 implies (3) {[6th],[0th]} = {0,4}. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ ▬ │ │ 3 │ │ │ │ ▬ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ It follows that [5th] = 1|2|5|6. In view of ⛔「5th → 2|5」, actually it is [5th] = 1|6. On the other hand, by ⛔「Jump(1,6) ≥ 2」, there is at most one digit between 1 and 6. Therefore, we have {[5th], [3rd]} = {1,6}: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ ▬ │ / │ 3 │ / │ │ │ ▬ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ It follows that [1st] = 2|5. In view of (2), we have [1st] = 5 indeed. As a result, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 3 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 3 │ │ │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ 3 │ │ 2 │ 5 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Next, note that to match (3) and avoid ⛔「min ⊢4⊣ = 4」 at the same time, we need: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 3 │ │ 2 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 4 │ │ 3 │ │ 2 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ │ 3 │ │ 2 │ 5 │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, using ⛔「min ⊢4⊣ = 4」 once more, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 4 │ │ 3 │ │ 2 │ 5 │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 1 │ 3 │ │ 2 │ 5 │ 0 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 1 │ 3 │ 6 │ 2 │ 5 │ 0 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.5
No comments:
Post a Comment