Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
4th → 4
⟦2,5⟧ ∋ 1,3,4,6
{p6, p5, p1} = ? + {0,1,2}
3rd → a, 0th → b, a+b=1+4n
⛔Avoid
⟨? ⋯ 3 ⋯ (?−1) ⋯⟩ (?≠3,4)
#125034_v2.5
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 4 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 4 │ │ 6 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ 4 │ │ 6 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ 4 │ 0 │ 6 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ │ 4 │ 0 │ 6 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 1 │ 4 │ 0 │ 6 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 1 │ 4 │ 0 │ 6 │ 3 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-06-11 Q1(m=6) ═══════════════════════════ Notation: if Nth -> a, then we write pN = a. Plainly, our first step follows from ✅「4th → 4」. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 4 │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ To proceed, we consider ✅「{p6, p5, p1} = ? + {0,1,2}」. To match this pattern, we need p6, p5, p1 to be consecutive integers: ┌───┬───┬───┬───┬───┬───┬───┐ │*6 │*5 │4th│3rd│2nd│*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ ▬ │ ▬ │ 4 │ │ │ ▬ │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Observe that we cannot achieve this if 6 is one of them. Therefore, (1) 6 = p3|p2|p0. We show that 6 = p2 actually. ------------------------------ For, ✅「⟦2,5⟧ ∋ 1,3,4,6」 implies that 1,3,4,6 are not in corners. A fortiori, 6 != p0. On the other hand, if 6 = p3, then ✅「3rd → a, 0th → b, a+b=1+4n」 implies that p0 = 3, but we have known that 3 is not in the right corner, so it is a contradiction. ------------------------------ We have verified our claim in (1). Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 4 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ 4 │ │ 6 │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we consider where to place 5. Again, using ✅「{p6, p5, p1} = ? + {0,1,2}」, we see that 5 is not at 6th, 5th, or 1st. We have 5 != p3 as well, for otherwise we cannot match ✅「⟦2,5⟧ ∋ 1,3,4,6」. Therefore, 5 = p0: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 4 │ │ 6 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ 4 │ │ 6 │ │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, using ✅「3rd → a, 0th → b, a+b=1+4n」, we get p3 = 0: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 4 │ │ 6 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ 4 │ 0 │ 6 │ │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Now, note that to match ✅「⟦2,5⟧ ∋ 1,3,4,6」, we need to put 2 at the left corner. So, ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 4 │ 0 │ 6 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ │ 4 │ 0 │ 6 │ │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨? ⋯ 3 ⋯ (?−1) ⋯⟩ (?≠3,4)」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ 4 │ 0 │ 6 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 1 │ 4 │ 0 │ 6 │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 1 │ 4 │ 0 │ 6 │ 3 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.5
No comments:
Post a Comment