Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ³ʳᵈa ²ⁿᵈb ⟩, (ab)₁₀ ≤ 14
⟦1,6⟧ ∋ 0,3,4,5
⟨⋯ ? ⋯ 3 ⋯ (?+4)⟩
5th → a, 1st → b, ab=3+5n
⛔Avoid
⟨ ⁶ᵗʰa ³ʳᵈb ⟩, max⟦a,b⟧ = 5
{p6, p5, p4, p3} = ? + {0,1,2,4}
#125034_v2.5
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 5 │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ 0 │ 5 │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ │ 0 │ 5 │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 2 │ │ 0 │ 5 │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 2 │ 3 │ 0 │ 5 │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 2 │ 3 │ 0 │ 5 │ 4 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-06-04 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. To match ✅「⟨⋯ ? ⋯ 3 ⋯ (?+4)⟩」, we need (1) [0th] = 4|5|6. Since ✅「⟦1,6⟧ ∋ 0,3,4,5」 implies that 4 and 5 are not in the right corner, (1) gives [0th] = 6. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Now, 5 is the maximum idle digit. So, to avoid ⛔「⟨ ⁶ᵗʰa ³ʳᵈb ⟩, max⟦a,b⟧ = 5」, we need: (2) 5 = [2nd] | [1st]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ / │ / │ / │ / │ │ │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ Observe that if 5 = [1st], then (3) [5th] * [1st] will be divisible by 5. This is a contradiction, however, if our answer matches ✅「5th → a, 1st → b, ab=3+5n」 as well. Therefore, 5 != [1st]. So, back to (2), we get 5 = [2nd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 5 │ │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Next, note that ✅「⟨ ³ʳᵈa ²ⁿᵈb ⟩, (ab)₁₀ ≤ 14」 determines the value of [3rd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ 5 │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ 0 │ 5 │ │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ We proceed to check the value of [1st]. There are four idle digits left: (4) [1st] = 1|2|3|4. We claim that [1st] = 4 actually. ------------------------------ In fact, note that: (4.1) If [1st] = 1, then we cannot match ✅「⟦1,6⟧ ∋ 0,3,4,5」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ 0 │ 5 │ 1 │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ (4.2) Else if [1st] = 2, then we cannot match ✅「⟨⋯ ? ⋯ 3 ⋯ (?+4)⟩」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ 0 │ 5 │ 2 │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ (4.3) Else if [1st] = 3, then we would match ⛔「{p6, p5, p4, p3} = ? + {0,1,2,4}」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ 0 │ 5 │ 3 │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ ------------------------------ Combining (4), (4.1), (4.2), and (4.3), we have verified that [1st] = 4. Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ 0 │ 5 │ │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ │ │ 0 │ 5 │ 4 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Using ✅「5th → a, 1st → b, ab=3+5n」, we get [5th] = 2 as well: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ 0 │ 5 │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 2 │ │ 0 │ 5 │ 4 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, in view of ✅「⟨⋯ ? ⋯ 3 ⋯ (?+4)⟩」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 2 │ │ 0 │ 5 │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 2 │ 3 │ 0 │ 5 │ 4 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 2 │ 3 │ 0 │ 5 │ 4 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.5
No comments:
Post a Comment