Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
6th → a, 1st → b, |a-b|=3
2nd → 0|3
⟨? ⋯ 6 ⋯ (?+3) ⋯⟩ (?≠3)
max ⊢0⊣ ≤ 4
max ⊢3⊣ = 3
#125034_v2.5
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ 0 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 1 │ │ │ │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 6 │ │ │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 6 │ │ 3 │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 6 │ 2 │ 3 │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 6 │ 2 │ 3 │ 0 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-05-14 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「⟨? ⋯ 6 ⋯ (?+3) ⋯⟩ (?≠3)」, we have [6th] = 0|1|2. Actually [6th] != 0, for otherwise it follows from ✅「6th → a, 1st → b, |a-b|=3」 that ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ │ │ │ │ 3 │ │ └───┴───┴───┴───┴───┴───┴───┘ But then we cannot match ✅「2nd → 0|3」, which is a contradiction. Hence, we have (1) [6th] = 1|2. Combining this with ✅「6th → a, 1st → b, |a-b|=3」, we see that one of the following holds: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (2) │ 1 │ │ │ │ │ 4 │ │ ├───┼───┼───┼───┼───┼───┼───┤ (3) │ 2 │ │ │ │ │ 5 │ │ └───┴───┴───┴───┴───┴───┴───┘ No matter which case happens, if we place 3 at 2nd, then we cannot match ✅「max ⊢3⊣ = 3」. So, in view of ✅「2nd → 0|3」, we get [2nd] = 0 as our first step: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ 0 │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ It then follows from ✅「max ⊢0⊣ ≤ 4」 that case (3) does not hold. Therefore, case (2) holds, and we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ 0 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 1 │ │ │ │ 0 │ 4 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we consider how to place 6. Plainly, there are four possibilities: (4) 6 = [5th] | [4th] | [3rd] | [0th]. We proceed to show that 6 is at 5th. ------------------------------ (4.1) By ✅「⟨? ⋯ 6 ⋯ (?+3) ⋯⟩ (?≠3)」, we need 6 is between 1 and 4, so 6 != [0th]. (4.2) On the other hand, to match ✅「max ⊢0⊣ ≤ 4」, we cannot have 6 = [3rd]. (4.3) If 6 = [4th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 1 │ │ 6 │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ then we have no way to match ✅「max ⊢3⊣ = 3」. So, we have 6 != [4th] as well. ------------------------------ Combining (4), (4.1), (4.2), and (4.3), we conclude that 6 = [5th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ │ │ │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 6 │ │ │ 0 │ 4 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, observe that to match ✅「max ⊢3⊣ = 3」, there is only one way to place 3: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 6 │ │ │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 6 │ │ 3 │ 0 │ 4 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, applying ✅「max ⊢3⊣ = 3」 once more, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 6 │ │ 3 │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 6 │ 2 │ 3 │ 0 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 6 │ 2 │ 3 │ 0 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.5
No comments:
Post a Comment