Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟦2,6⟧ ∋ 0,1,3
4th → a, 1st → b, a+b=1+6n
⟨? ⋯ 3 ⋯ (?+4) ⋯⟩
⟨ ⁴ᵗʰc ²ⁿᵈa ⁰ᵗʰb ⟩, a > b > c
3rd → 3|4|6
#125034_v2.5
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 2 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ │ │ 3 │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ │ 1 │ 3 │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ │ 1 │ 3 │ │ 6 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ │ 1 │ 3 │ 5 │ 6 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 1 │ 3 │ 5 │ 6 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-05-07 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「⟨? ⋯ 3 ⋯ (?+4) ⋯⟩」, we have [6th] = 0|1|2. Since ✅「⟦2,6⟧ ∋ 0,1,3」 implies 0 and 1 are not in corners, we have [6th] = 2. ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 2 │ │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we consider the value of [0th]. As ✅「⟦2,6⟧ ∋ 0,1,3」 implies that 0,1,3 are not in corners, we have (1) [0th] = 6|5|4. (2) In view of ✅「⟨ ⁴ᵗʰc ²ⁿᵈa ⁰ᵗʰb ⟩, a > b > c」, we have [0th] != 6. We claim that [0th] = 4 actually. ------------------------------ For, suppose on the contrary [0th] = 5. Then, using ✅「⟨ ⁴ᵗʰc ²ⁿᵈa ⁰ᵗʰb ⟩, a > b > c」, we get [2nd] = 6: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ │ │ 6 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 3 │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ It then follows from ✅「⟦2,6⟧ ∋ 0,1,3」 that { [5th], [4th], [3rd] } = {0,1,3}, and that [1st] = 4: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│*5 │*4 │*3 │2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ ▬ │ ▬ │ ▬ │ 6 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Using ✅「3rd → 3|4|6」, we have [3rd] = 3: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ ▬ │ ▬ │ 3 │ 6 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ But then we cannot not match ✅「4th → a, 1st → b, a+b=1+6n」, which is a contradiction. ------------------------------ We have verified our claim in (2). Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ │ │ │ │ │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, note that to match ✅「⟦2,6⟧ ∋ 0,1,3」, we cannot place 6 at 3rd. So, in view of ✅「3rd → 3|4|6」, we get [3rd] = 3: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ │ │ 3 │ │ │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ We proceed to consider how to match ✅「4th → a, 1st → b, a+b=1+6n」. Observe that there are only two ways to do so: (3) {[4th], [1st]} = {0,1} | {1,6}. We need to use 1 in both cases, so 1 = [4th] | [1st]. To match ✅「⟦2,6⟧ ∋ 0,1,3」, we cannot have 1 = [1st]. It follows that 1 = [4th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ │ 3 │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ │ 1 │ 3 │ │ │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, by (3), we have [1st] = 0|6. Again using ✅「⟦2,6⟧ ∋ 0,1,3」, we see that [1st] != 0. So, [1st] = 6: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ 1 │ 3 │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ │ 1 │ 3 │ │ 6 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to match ✅「⟨ ⁴ᵗʰc ²ⁿᵈa ⁰ᵗʰb ⟩, a > b > c」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ 1 │ 3 │ │ 6 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ │ 1 │ 3 │ 5 │ 6 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 1 │ 3 │ 5 │ 6 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.5
No comments:
Post a Comment