Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ Perm(0,1,4) ⋯⟩
⟨⋯ 2 ⋯ 5 ⋯ 1 ⋯⟩
6th → a, 5th → b, a+b=5
⟨⋯ Perm(1,6) ⋯⟩
⛔Avoid
⟨⋯ 4 ⋯ a ⋯⟩, a = 0|5
6th → a, 0th → b, a+b=8
2nd → 1
#125034_v2.4
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 1 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 1 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 2 │ │ │ │ 1 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 2 │ 5 │ │ │ 1 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 2 │ 5 │ │ │ 1 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 2 │ 5 │ 0 │ │ 1 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 2 │ 5 │ 0 │ 4 │ 1 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-04-23 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. To begin with, note that by ✅「⟨⋯ 2 ⋯ 5 ⋯ 1 ⋯⟩」, ✅「⟨⋯ Perm(0,1,4) ⋯⟩」, and ✅「⟨⋯ Perm(1,6) ⋯⟩」, we need to match (1) ⟨⋯ 2 ⋯ 5 ⋯ Perm(0,1,4,6) ⋯⟩. Four consecutive boxes are needed for Perm(0,1,4,6). In view of (1), there are two possibilities: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (2) │ │ │ ▬ │ ▬ │ ▬ │ ▬ │ │ ├───┼───┼───┼───┼───┼───┼───┤ (3) │ │ │ │ ▬ │ ▬ │ ▬ │ ▬ │ └───┴───┴───┴───┴───┴───┴───┘ Actually (2) is not possible, for otherwise it follows from (1) that ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 5 │ ▬ │ ▬ │ ▬ │ ▬ │ │ └───┴───┴───┴───┴───┴───┴───┘ and we cannot match ✅「6th → a, 5th → b, a+b=5」, which is a contradiction. Therefore, (3) holds. A fortiori, (4) 1 = [3rd] | [2nd] | [1st] | [0th]. By ⛔「2nd → 1」, plainly 1 != [2nd]. On the other hand, if 1 is at the boundary of the four consecutive boxes (i.e. 3rd or 0th), then by ✅「⟨⋯ Perm(1,6) ⋯⟩」 and (3), we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ 1 │ 6 │ ▬ │ ▬ │ ├───┼───┼───┼───┼───┼───┼───┤ │ │ │ │ ▬ │ ▬ │ 6 │ 1 │ └───┴───┴───┴───┴───┴───┴───┘ It follows that we cannot match ✅「⟨⋯ Perm(0,1,4) ⋯⟩」, which is a contradiction. Therefore, 1 = [1st]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ ▬ │ ▬ │ 1 │ ▬ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Then, to match both ✅「⟨⋯ Perm(1,6) ⋯⟩」 and ✅「⟨⋯ Perm(0,1,4) ⋯⟩」, we have to place 6 at 0th. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 2 │ │ │ │ ▬ │ ▬ │ 1 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we determine where to place 2. By (1), we have (5) 2 = [6th] | [5th]. Since we have to avoid ⛔「6th → a, 0th → b, a+b=8」, so 2 = [5th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 3 │ │ 2 │ │ ▬ │ ▬ │ 1 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, by (1), we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 4 │ │ 2 │ 5 │ ▬ │ ▬ │ 1 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 2 │ 5 │ ▬ │ ▬ │ 1 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Finally, in view of ⛔「⟨⋯ 4 ⋯ a ⋯⟩, a = 0|5」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 6 │ 3 │ 2 │ 5 │ 0 │ ▬ │ 1 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 2 │ 5 │ 0 │ 4 │ 1 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Q.E.D. #125034_v2.4
No comments:
Post a Comment