Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨? 6 ⋯ (?−2) ⋯ 1 ⋯⟩ (?≠6)
⟨ ⁶ᵗʰb ⁵ᵗʰa ¹ˢᵗc ⟩, a > b > c
⟨Perm(1,3,5,6) Perm(0,2,4)⟩
2nd → 1|2|4
⛔Avoid
max ⊢1⊣ ≤ 4
3rd → 4|5|6
3rd → a, 0th → b, ab=2+4n
⟨⋯ 3 ⋯ ? ⋯ 2 (?−6)⟩
#125034_v2.4
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 6 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 6 │ │ 1 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 6 │ 5 │ 1 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 6 │ 5 │ 1 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 6 │ 5 │ 1 │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 6 │ 5 │ 1 │ 2 │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 6 │ 5 │ 1 │ 2 │ 0 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-04-09 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, our first step follows from ✅「⟨? 6 ⋯ (?−2) ⋯ 1 ⋯⟩ (?≠6)」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 6 │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we determine the value of [3rd]. By ✅「⟨Perm(1,3,5,6) Perm(0,2,4)⟩」 and ⛔「3rd → 4|5|6」, we see that (1) [3rd] = 1|3. We claim that [3rd] = 1. ------------------------------ For, suppose on the contrary [3rd] = 3: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 6 │ │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, by ✅「⟨Perm(1,3,5,6) Perm(0,2,4)⟩」, we have [6th] = 1|5. As ✅「⟨? 6 ⋯ (?−2) ⋯ 1 ⋯⟩ (?≠6)」 implies [6th] != 1, we get [6th] = 5: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 5 │ 6 │ │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ But then we cannot match ✅「⟨Perm(1,3,5,6) Perm(0,2,4)⟩」 and ✅「⟨? 6 ⋯ (?−2) ⋯ 1 ⋯⟩ (?≠6)」 at the same time, which is a contradiction. ------------------------------ Our claim in (1) is thus verified. Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 6 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 6 │ │ 1 │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, observe that there is only one way to match ✅「⟨Perm(1,3,5,6) Perm(0,2,4)⟩」 and avoid ⛔「max ⊢1⊣ ≤ 4」 at the same time. That is ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 6 │ │ 1 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 6 │ 5 │ 1 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 6 │ 5 │ 1 │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ We proceed to determine the value of [1st]. By ✅「⟨ ⁶ᵗʰb ⁵ᵗʰa ¹ˢᵗc ⟩, a > b > c」, we have (2) [1st] = 2|0. We claim that [1st] = 0 actually. ------------------------------ For, if on the contrary [1st] = 2: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 6 │ 5 │ 1 │ │ 2 │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「2nd → 1|2|4」, we reach ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 3 │ 6 │ 5 │ 1 │ 4 │ 2 │ 0 │ └───┴───┴───┴───┴───┴───┴───┘ But then we match ⛔「⟨⋯ 3 ⋯ ? ⋯ 2 (?−6)⟩」, which is a contradiction. ------------------------------ We have verified our claim in (2). As a result, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 6 │ 5 │ 1 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 6 │ 5 │ 1 │ │ 0 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, noting that to avoid ⛔「3rd → a, 0th → b, ab=2+4n」 we cannot have [0th] = 2, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 6 │ 5 │ 1 │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 6 │ 5 │ 1 │ 2 │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 6 │ 5 │ 1 │ 2 │ 0 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.4
No comments:
Post a Comment