Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
4th → a, 1st → b, ab=2+4n
Jump(2,3) = 1
⟨ ⁶ᵗʰc ²ⁿᵈa ¹ˢᵗb ⟩, a > b > c
⛔Avoid
⟨⋯ 3 ⋯ 0 ⋯⟩
⟨⋯ ? ⋯ 6 ⋯ (?+1)⟩ (?≠5)
min ⊢5⊣ ≥ 2
6th → a, 3rd → b, ab=0+6n
#125034_v2.4
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 1 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 1 │ 0 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 1 │ 0 │ 5 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 0 │ 5 │ │ │ 2 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 0 │ 5 │ 3 │ │ 2 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 0 │ 5 │ 3 │ │ 2 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 0 │ 5 │ 3 │ 4 │ 2 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-04-02 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. We begin with the left corner, i.e. [6th]. Observe that (i) By ✅「⟨ ⁶ᵗʰc ²ⁿᵈa ¹ˢᵗb ⟩, a > b > c」, it is not 6 or 5; (ii) By ⛔「⟨⋯ 3 ⋯ 0 ⋯⟩」, it is not 3; (iii) By ⛔「6th → a, 3rd → b, ab=0+6n」, it is not 0. Therefore, (1) [6th] = 4|2|1. We proceed to show that [6th] = 1 indeed. ------------------------------ (1.1) Assume [6th] = 4. Then, to match ✅「⟨ ⁶ᵗʰc ²ⁿᵈa ¹ˢᵗb ⟩, a > b > c」, we need "a"=6 and "b"=5: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│ 2▲│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ │ │ │ 6 │ 5 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, to avoid ⛔「min ⊢5⊣ ≥ 2」, we need [0th] = 1|0: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ │ │ │ 6 │ 5 │ ▬ │ └───┴───┴───┴───┴───┴───┴───┘ But it is a contradiction: ● If [0th] = 1, then we would match ⛔「⟨⋯ ? ⋯ 6 ⋯ (?+1)⟩ (?≠5)」; ● Else if [0th] = 0, then we would match ⛔「⟨⋯ 3 ⋯ 0 ⋯⟩」. Hence, our assumption "[6th] = 4" is not correct. (1.2) Else, assume [6th] = 2. By ✅「Jump(2,3) = 1」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ 3 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「4th → a, 1st → b, ab=2+4n」, we need [1st] = 6: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ 3 │ │ │ 6 │ │ └───┴───┴───┴───┴───┴───┴───┘ But then ✅「⟨ ⁶ᵗʰc ²ⁿᵈa ¹ˢᵗb ⟩, a > b > c」 cannot be matched, which is a contradiction. ------------------------------ By (1.1) and (1.2), our claim in (1) is verified. Accordingly, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 1 │ │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we decide where to place 0. Note that: (i) To avoid ⛔「⟨⋯ 3 ⋯ 0 ⋯⟩」, we need [0th] != 0; (ii) By ✅「⟨ ⁶ᵗʰc ²ⁿᵈa ¹ˢᵗb ⟩, a > b > c」, 0 is not at 1st or 2nd; (iii) To avoid ⛔「6th → a, 3rd → b, ab=0+6n」, we need [3rd] != 0; (iv) To match ✅「4th → a, 1st → b, ab=2+4n」, we need [4th] != 0. Consequently, 0 = [5th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 1 │ 0 │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Now, note that to avoid ⛔「min ⊢5⊣ ≥ 2」, we need 5 adjacent to 1 or 0. We have only one way to do so: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 0 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 1 │ 0 │ 5 │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「4th → a, 1st → b, ab=2+4n」, we have [1st] = 6|2. Actually [1st] != 6, for we have to match ✅「⟨ ⁶ᵗʰc ²ⁿᵈa ¹ˢᵗb ⟩, a > b > c」 as well. Hence, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 0 │ 5 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 0 │ 5 │ │ │ 2 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, by ✅「Jump(2,3) = 1」, plainly we have [3rd] = 3. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 0 │ 5 │ │ │ 2 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 0 │ 5 │ 3 │ │ 2 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, in view of ⛔「⟨⋯ ? ⋯ 6 ⋯ (?+1)⟩ (?≠5)」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 0 │ 5 │ 3 │ │ 2 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 0 │ 5 │ 3 │ │ 2 │ 6 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 1 │ 0 │ 5 │ 3 │ 4 │ 2 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.4
No comments:
Post a Comment