Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ⁶ᵗʰa ⁴ᵗʰb ²ⁿᵈc ⟩, a > b > c
1st → a, 0th → b, a+b=1+6n
2nd → a, 0th → b, a+b=3
⟦0,1⟧ ∋ 2,4
⟨ ³ʳᵈ↓ ⟩ after ⟨→⟩
#125034_v2.4
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 2 │ │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ │ 2 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 0 │ │ │ 2 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 0 │ 3 │ │ 2 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 0 │ 3 │ 4 │ 2 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 5 │ 0 │ 3 │ 4 │ 2 │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-03-26 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「1st → a, 0th → b, a+b=1+6n」, we have (1) [1st] + [0th] = 1 | 7. If the above sum is 1, then { [1st], [0th] } = {0,1}, but then we cannot match ✅「⟦0,1⟧ ∋ 2,4」, which is a contradiction. It follows that (2) [1st] + [0th] = 7. On the other hand, by ✅「2nd → a, 0th → b, a+b=3」, we have (3) { [2nd], [0th] } = {0,3} | {1,2}. A fortiori, [0th] = 0|1|2|3. Observe that (i) To satisfy (2), we need [0th] != 0; (ii) ✅「⟦0,1⟧ ∋ 2,4」 implies that 2 is not in corners, so [0th] != 2; (iii) If [0th] = 3, then (2) gives [1st] = 4, but then we cannot match ✅「⟦0,1⟧ ∋ 2,4」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1▲│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ │ 4 │ 3 │ └───┴───┴───┴───┴───┴───┴───┘ Therefore, we have [0th] = 1. Then, by ✅「2nd → a, 0th → b, a+b=3」 and (2), we get [2nd] = 2 and [1st] = 6 as well: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│ 1■│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ 2 │ │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ │ 2 │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we consider where to place 0. It is the minimum digit, so by ✅「⟨ ³ʳᵈ↓ ⟩ after ⟨→⟩」 it cannot be at 3rd. Similarly, by ✅「⟨ ⁶ᵗʰa ⁴ᵗʰb ²ⁿᵈc ⟩, a > b > c」, it cannot be at 6th or 4th. Consequently, 0 = [5th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ 2 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 0 │ │ │ 2 │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ We proceed to determine where to place 3. Note that the other idle digits (4 and 5) are both greater than it. Therefore, by ✅「⟨ ³ʳᵈ↓ ⟩ after ⟨→⟩」, we have 3 != [3rd], and by ✅「⟨ ⁶ᵗʰa ⁴ᵗʰb ²ⁿᵈc ⟩, a > b > c」, we have 3 != [6th]. It follows that 3 = [4th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ │ │ 2 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ │ 0 │ 3 │ │ 2 │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, noting that there is only one way to match ✅「⟦0,1⟧ ∋ 2,4」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ 3 │ │ 2 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ │ 0 │ 3 │ 4 │ 2 │ 6 │ 1 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 5 │ 0 │ 3 │ 4 │ 2 │ 6 │ 1 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.4
No comments:
Post a Comment