Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ⁴ᵗʰa ¹ˢᵗb ⟩, max⟦a,b⟧ = 6
⟨ ⁵ᵗʰc ³ʳᵈb ⁰ᵗʰa ⟩, a > b > c
⟨⋯ ? ⋯ 5 ⋯ (?+2)⟩ (?≠3)
⛔Avoid
6th|5th|4th|2nd|1st → 4
⟨ ⁶ᵗʰa ⁴ᵗʰb ²ⁿᵈc ⟩, (abc)₁₀ ≤ 362
5th → a, 0th → b, |a-b|=3
#125034_v2.4
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 3 │ │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ │ 6 │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 0 │ 6 │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 0 │ 6 │ │ 5 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 0 │ 6 │ 2 │ 5 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 0 │ 6 │ 2 │ 5 │ 1 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-03-19 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. To begin with, we consider where to place 4. On the one hand, to avoid ⛔「6th|5th|4th|2nd|1st → 4」, we need (1) 4 = [3rd] | [0th]. On the other hand, by ✅「⟨⋯ ? ⋯ 5 ⋯ (?+2)⟩ (?≠3)」, we have [0th] = 2|3|4|6. Actually [0th] != 6 by ✅「⟨ ⁴ᵗʰa ¹ˢᵗb ⟩, max⟦a,b⟧ = 6」. Therefore, (2) [0th] = 2|3|4. Combining (2) with ✅「⟨ ⁵ᵗʰc ³ʳᵈb ⁰ᵗʰa ⟩, a > b > c」, we have (3) [3rd] < 4. So, it follows from (1) and (3) that 4 = [0th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we determine the value of [6th]. By ⛔「⟨ ⁶ᵗʰa ⁴ᵗʰb ²ⁿᵈc ⟩, (abc)₁₀ ≤ 362」, we need [6th] = 3|5|6. Note that ✅「⟨ ⁴ᵗʰa ¹ˢᵗb ⟩, max⟦a,b⟧ = 6」 implies [6th] != 6, and ✅「⟨⋯ ? ⋯ 5 ⋯ (?+2)⟩ (?≠3)」 implies [6th] != 5. It follows that [6th] = 3: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 3 │ │ │ │ │ │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to avoid ⛔「⟨ ⁶ᵗʰa ⁴ᵗʰb ²ⁿᵈc ⟩, (abc)₁₀ ≤ 362」, we need [4th] = 6: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ │ │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 3 │ │ 6 │ │ │ │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ We proceed to determine the value of [5th]. It is the "c" in ✅「⟨ ⁵ᵗʰc ³ʳᵈb ⁰ᵗʰa ⟩, a > b > c」. Hence, it cannot be 5 or 2. It is not 1 as well, by ⛔「5th → a, 0th → b, |a-b|=3」. Consequently, [5th] = 0: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ │ 6 │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 3 │ 0 │ 6 │ │ │ │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, note that there is only one way to avoid ⛔「⟨ ⁶ᵗʰa ⁴ᵗʰb ²ⁿᵈc ⟩, (abc)₁₀ ≤ 362」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 0 │ 6 │ │ │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 3 │ 0 │ 6 │ │ 5 │ │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to match ✅「⟨⋯ ? ⋯ 5 ⋯ (?+2)⟩ (?≠3)」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 3 │ 0 │ 6 │ │ 5 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 3 │ 0 │ 6 │ 2 │ 5 │ │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 3 │ 0 │ 6 │ 2 │ 5 │ 1 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.4
No comments:
Post a Comment