Web link

2024-03-12 Q1(m=6)

Rearrange the digits in ⟨1263045⟩ to meet the rules below.

⟨6th 5th 4th 3rd 2nd 1st 0th⟩

✅Match
Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2
⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d
3rd → a, 1st → b, |a-b|=1

⛔Avoid
6th|4th|3rd|1st → 1
⟨       ³ʳᵈ↓   ¹ˢᵗ↑ ⁰ᵗʰ↓ ⟩ after 2×⟨→⟩

#125034_v2.4



       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 0 │   │   │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 0 │   │   │ 1 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 0 │   │ 3 │ 1 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 2 │ 0 │   │ 3 │ 1 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 2 │ 0 │ 6 │ 3 │ 1 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 2 │ 0 │ 6 │ 3 │ 1 │ 4 │ 5 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2024-03-12 Q1(m=6)
═══════════════════════════

Notation: if nth -> a, then we write [nth] = a.

We begin with an observation: by ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we have "d" = [2nd] < [0th] = "a". It means that 0th will decrease after 2×⟨→⟩. Therefore, the forbidden pattern ⛔「⟨       ³ʳᵈ↓   ¹ˢᵗ↑ ⁰ᵗʰ↓ ⟩ after 2×⟨→⟩」 can be relaxed to:

(1) ⛔「⟨       ³ʳᵈ↓   ¹ˢᵗ↑ ⟩ after 2×⟨→⟩」.

We consider where to place 1. By ⛔「6th|4th|3rd|1st → 1」, we have

(2) 1 = [5th] | [2nd] | [0th].

To match ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we cannot have "a"=1, so 1 != [0th].

(3) We claim that 1 = [2nd] actually.

------------------------------

For, suppose on the contrary 1 = [5th]:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Note that [3rd] != 0, for otherwise we cannot match ✅「3rd → a, 1st → b, |a-b|=1」. Therefore [3rd] > 1, and so 3rd ↓ after 2×⟨→⟩. It follows that to avoid (1), we need to have 1st ↓ after 2×⟨→⟩, or equivalently [3rd] < [1st]. Combining this with ✅「3rd → a, 1st → b, |a-b|=1」, we have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│*3 │2nd│*1 │0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │   │ X │   │ Y │   │
└───┴───┴───┴───┴───┴───┴───┘

where Y = X+1 and X ∈ {2,3,4,5}. There are four cases:

● (X,Y) = (2,3)
● (X,Y) = (3,4)
● (X,Y) = (4,5)
● (X,Y) = (5,6)

(4) We proceed to verify that all of them give contradictions. Doing so will establish our claim in (3).

------------------------------

(4.1) If (X,Y) = (2,3):

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │   │ 2 │   │ 3 │   │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │   │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

then we cannot find "c" and "d" to match ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」.

(4.2) Else if (X,Y) = (3,4):

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │   │ 3 │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │ 6 │   │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

then there is only one choice of "c" and "d" of ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」:

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 2 │ 1 │   │ 3 │ 0 │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │   │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

but then we cannot match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」.

(4.3) Else if (X,Y) = (4,5):

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │   │ 4 │   │ 5 │   │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │ 6 │ 3 │ 0 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

then by ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we have "a" = 6:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │   │ 4 │   │ 5 │ 6 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │   │ 3 │ 0 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

but then we cannot match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」.

(4.4) Else if (X,Y) = (5,6):

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 1 │   │ 5 │   │ 6 │   │
└───┴───┴───┴───┴───┴───┴───┘

then we have no "a" to match ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」.

------------------------------

We have verified (4). As a result, we get our first step:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │ 1 │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │ 6 │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Now, let us consider where to place 0. It cannot be the "a", "b", or "c" of ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ / │   │   │   │ 1 │ / │ / │
└───┴───┴───┴───┴───┴───┴───┘

In view of ✅「3rd → a, 1st → b, |a-b|=1」, it is not at 3rd as well:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ / │   │   │ / │ 1 │ / │ / │
└───┴───┴───┴───┴───┴───┴───┘

Hence, 0 = [5th] | [4th].

(5) We claim that 0 = [5th] actually.

------------------------------

Suppose on the contrary 0 = [4th]:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 0 │   │ 1 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │ 6 │ 3 │   │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Noting that [6th] != 5 by ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we see that to match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」, we need [1st] = 3 and [0th] = 4:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│ 1▲│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 0 │   │ 1 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │ 6 │   │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Then, ✅「3rd → a, 1st → b, |a-b|=1」 implies [3rd] = 2:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 0 │ 2 │ 1 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │   │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

But now we cannot match ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, which shows a contradiction.

------------------------------

We have verified our claim in (5). Accordingly, we get:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │   │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 0 │   │   │ 1 │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │ 6 │ 3 │   │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Having [5th] = 0 means that 3rd↓ after 2×⟨→⟩. So, the forbidden pattern (1) can be relaxed to:

(6) ⛔「⟨       ¹ˢᵗ↑ ⟩ after 2×⟨→⟩」.

Combining this with ✅「3rd → a, 1st → b, |a-b|=1」, we get

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│*3 │2nd│*1 │0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │ X │ 1 │ Y │   │
└───┴───┴───┴───┴───┴───┴───┘

where Y = X+1 and X ∈ {2,3,4,5}. The four possibilities are:

● (X,Y) = (2,3)
● (X,Y) = (3,4)
● (X,Y) = (4,5)
● (X,Y) = (5,6)

(7) We claim that (X,Y) = (3,4) actually.

------------------------------

(7.1) If (X,Y) = (2,3):

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │ 2 │ 1 │ 3 │   │
└───┴───┴───┴───┴───┴───┴───┘

then we cannot find "c" to match ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」.

(7.2) Else if (X,Y) = (4,5):

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │ 4 │ 1 │ 5 │   │
└───┴───┴───┴───┴───┴───┴───┘

then by ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」 we have [0th] = 6:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │ 4 │ 1 │ 5 │ 6 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │   │ 3 │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

But then we cannot match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」, which is a contradiction.

(7.3) Else if (X,Y) = (5,6):

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│2nd│ 1▲│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │ 5 │ 1 │ 6 │   │
└───┴───┴───┴───┴───┴───┴───┘

then we have no "a" to match ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」.

------------------------------

We have verified our claim in (7). Accordingly

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│ 3■│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 0 │   │   │ 1 │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 0 │   │   │ 1 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │   │ 0 │   │ 3 │ 1 │ 4 │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │ 6 │   │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

To match ✅「⟨ ⁶ᵗʰc       ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we need "c" = [6th] < [1st] = 4. The only possible choice is [6th] = 2. So, we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │ 6■│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 0 │   │ 3 │ 1 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 2 │ 0 │   │ 3 │ 1 │ 4 │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │   │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Finally, to match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」, we need [4th] = 6. We finish by

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│ 4■│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 2 │ 0 │   │ 3 │ 1 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 2 │ 0 │ 6 │ 3 │ 1 │ 4 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 2 │ 0 │ 6 │ 3 │ 1 │ 4 │ 5 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.4

No comments:

Post a Comment