Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2
⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d
3rd → a, 1st → b, |a-b|=1
⛔Avoid
6th|4th|3rd|1st → 1
⟨ ³ʳᵈ↓ ¹ˢᵗ↑ ⁰ᵗʰ↓ ⟩ after 2×⟨→⟩
#125034_v2.4
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 0 │ │ │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 0 │ │ │ 1 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 0 │ │ 3 │ 1 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 0 │ │ 3 │ 1 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 0 │ 6 │ 3 │ 1 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 6 │ 3 │ 1 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-03-12 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. We begin with an observation: by ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we have "d" = [2nd] < [0th] = "a". It means that 0th will decrease after 2×⟨→⟩. Therefore, the forbidden pattern ⛔「⟨ ³ʳᵈ↓ ¹ˢᵗ↑ ⁰ᵗʰ↓ ⟩ after 2×⟨→⟩」 can be relaxed to: (1) ⛔「⟨ ³ʳᵈ↓ ¹ˢᵗ↑ ⟩ after 2×⟨→⟩」. We consider where to place 1. By ⛔「6th|4th|3rd|1st → 1」, we have (2) 1 = [5th] | [2nd] | [0th]. To match ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we cannot have "a"=1, so 1 != [0th]. (3) We claim that 1 = [2nd] actually. ------------------------------ For, suppose on the contrary 1 = [5th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Note that [3rd] != 0, for otherwise we cannot match ✅「3rd → a, 1st → b, |a-b|=1」. Therefore [3rd] > 1, and so 3rd ↓ after 2×⟨→⟩. It follows that to avoid (1), we need to have 1st ↓ after 2×⟨→⟩, or equivalently [3rd] < [1st]. Combining this with ✅「3rd → a, 1st → b, |a-b|=1」, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│*3 │2nd│*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ X │ │ Y │ │ └───┴───┴───┴───┴───┴───┴───┘ where Y = X+1 and X ∈ {2,3,4,5}. There are four cases: ● (X,Y) = (2,3) ● (X,Y) = (3,4) ● (X,Y) = (4,5) ● (X,Y) = (5,6) (4) We proceed to verify that all of them give contradictions. Doing so will establish our claim in (3). ------------------------------ (4.1) If (X,Y) = (2,3): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ 2 │ │ 3 │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ then we cannot find "c" and "d" to match ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」. (4.2) Else if (X,Y) = (3,4): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ then there is only one choice of "c" and "d" of ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 1 │ │ 3 │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ but then we cannot match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」. (4.3) Else if (X,Y) = (4,5): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ 4 │ │ 5 │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ then by ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we have "a" = 6: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ 4 │ │ 5 │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 3 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ but then we cannot match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」. (4.4) Else if (X,Y) = (5,6): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ 5 │ │ 6 │ │ └───┴───┴───┴───┴───┴───┴───┘ then we have no "a" to match ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」. ------------------------------ We have verified (4). As a result, we get our first step: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ 1 │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Now, let us consider where to place 0. It cannot be the "a", "b", or "c" of ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ / │ │ │ │ 1 │ / │ / │ └───┴───┴───┴───┴───┴───┴───┘ In view of ✅「3rd → a, 1st → b, |a-b|=1」, it is not at 3rd as well: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ / │ │ │ / │ 1 │ / │ / │ └───┴───┴───┴───┴───┴───┴───┘ Hence, 0 = [5th] | [4th]. (5) We claim that 0 = [5th] actually. ------------------------------ Suppose on the contrary 0 = [4th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 0 │ │ 1 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Noting that [6th] != 5 by ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we see that to match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」, we need [1st] = 3 and [0th] = 4: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1▲│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 0 │ │ 1 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, ✅「3rd → a, 1st → b, |a-b|=1」 implies [3rd] = 2: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 0 │ 2 │ 1 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ But now we cannot match ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, which shows a contradiction. ------------------------------ We have verified our claim in (5). Accordingly, we get: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 0 │ │ │ 1 │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Having [5th] = 0 means that 3rd↓ after 2×⟨→⟩. So, the forbidden pattern (1) can be relaxed to: (6) ⛔「⟨ ¹ˢᵗ↑ ⟩ after 2×⟨→⟩」. Combining this with ✅「3rd → a, 1st → b, |a-b|=1」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│*3 │2nd│*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ │ X │ 1 │ Y │ │ └───┴───┴───┴───┴───┴───┴───┘ where Y = X+1 and X ∈ {2,3,4,5}. The four possibilities are: ● (X,Y) = (2,3) ● (X,Y) = (3,4) ● (X,Y) = (4,5) ● (X,Y) = (5,6) (7) We claim that (X,Y) = (3,4) actually. ------------------------------ (7.1) If (X,Y) = (2,3): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ │ 2 │ 1 │ 3 │ │ └───┴───┴───┴───┴───┴───┴───┘ then we cannot find "c" to match ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」. (7.2) Else if (X,Y) = (4,5): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ │ 4 │ 1 │ 5 │ │ └───┴───┴───┴───┴───┴───┴───┘ then by ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」 we have [0th] = 6: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ │ 4 │ 1 │ 5 │ 6 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ But then we cannot match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」, which is a contradiction. (7.3) Else if (X,Y) = (5,6): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│ 1▲│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ │ 5 │ 1 │ 6 │ │ └───┴───┴───┴───┴───┴───┴───┘ then we have no "a" to match ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」. ------------------------------ We have verified our claim in (7). Accordingly ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ │ │ 1 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 0 │ │ │ 1 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 0 │ │ 3 │ 1 │ 4 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ To match ✅「⟨ ⁶ᵗʰc ²ⁿᵈd ¹ˢᵗb ⁰ᵗʰa ⟩, a > b > c > d」, we need "c" = [6th] < [1st] = 4. The only possible choice is [6th] = 2. So, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 0 │ │ 3 │ 1 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 0 │ │ 3 │ 1 │ 4 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to match ✅「Sim⟨ ⁶ᵗʰ5 ⁵ᵗʰ0 ⁴ᵗʰ6 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ3 ⁰ᵗʰ4 ⟩ ≥ 2」, we need [4th] = 6. We finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ 0 │ │ 3 │ 1 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 0 │ 6 │ 3 │ 1 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 6 │ 3 │ 1 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.4
No comments:
Post a Comment