Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
Sim⟨ ⁶ᵗʰ3 ⁵ᵗʰ6 ⁴ᵗʰ5 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ4 ⁰ᵗʰ0 ⟩ ≥ 3
⟨⋯ 4 ⋯ ? 0 ⋯ (?+4)⟩ (?≠0)
⟨? 3 ⋯ (?+1) ⋯ 5 ⋯⟩ (?≠3,2)
#125034_v2.3
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 3 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 3 │ 5 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 3 │ 5 │ 1 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 3 │ 5 │ 1 │ 2 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ 3 │ 5 │ 1 │ 2 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 3 │ 5 │ 1 │ 2 │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 3 │ 5 │ 1 │ 2 │ 0 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-02-27 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, it follows from ✅「⟨? 3 ⋯ (?+1) ⋯ 5 ⋯⟩ (?≠3,2)」 that [5th] = 3: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 3 │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we consider how to match ✅「Sim⟨ ⁶ᵗʰ3 ⁵ᵗʰ6 ⁴ᵗʰ5 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ4 ⁰ᵗʰ0 ⟩ ≥ 3」. By ✅「⟨⋯ 4 ⋯ ? 0 ⋯ (?+4)⟩ (?≠0)」, there are at least three digits at the right of 4, and at least one digit at the right of 0. Hence, (1) [1st] != 4 and [0th] != 0. On the other hand, step 1 shows that [5th] = 3. A fortiori, (2) [6th] != 3 and [5th] != 6. Combining ✅「Sim⟨ ⁶ᵗʰ3 ⁵ᵗʰ6 ⁴ᵗʰ5 ³ʳᵈ1 ²ⁿᵈ2 ¹ˢᵗ4 ⁰ᵗʰ0 ⟩ ≥ 3」, (1), and (2), we obtain the values of [4th], [3rd], and [2nd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 3 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 3 │ 5 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 3 │ 5 │ 1 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ │ 3 │ 5 │ 1 │ 2 │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ By ✅「⟨⋯ 4 ⋯ ? 0 ⋯ (?+4)⟩ (?≠0)」, 0 is not in corners, and 4 is at the left of 0. Therefore, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│ 1■│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 3 │ 5 │ 1 │ 2 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ 3 │ 5 │ 1 │ 2 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 3 │ 5 │ 1 │ 2 │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 3 │ 5 │ 1 │ 2 │ 0 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.3
No comments:
Post a Comment