Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d
⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)
⟦0,4⟧ ∋ 3
⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩
⛔Avoid
⟨? ⋯ 1 (?−6) ⋯ 0 ⋯⟩
0 ∾ 3 ∾ 6
⟨⋯ Perm(0,6) ⋯⟩
----- Information -----
🔲 「⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」
210 permutations match this pattern.
Examples: ⟨5016234⟩, ⟨3026415⟩, ⟨6024513⟩.
🔲 「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」
?, 1, (?−2) are three different numbers.
1440 permutations match this pattern.
Examples: ⟨4035162⟩, ⟨4503126⟩, ⟨5130642⟩.
🔲 「⟦0,4⟧ ∋ 3」
The closed interval given by 0 and 4 contains 3.
1680 permutations match this pattern.
Examples: ⟨6013254⟩, ⟨6013542⟩, ⟨4361205⟩.
🔲 「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」
840 permutations match this pattern.
Examples: ⟨4126305⟩, ⟨1462035⟩, ⟨4015623⟩.
🔳 「⟨? ⋯ 1 (?−6) ⋯ 0 ⋯⟩」
?, 1, (?−6) are three different numbers.
120 permutations match this pattern.
Examples: ⟨6254103⟩, ⟨6253410⟩, ⟨6510324⟩.
🔳 「0 ∾ 3 ∾ 6」
0,3,6 are in the same cycle.
A permutation can be decomposed into cycles. For example, ⟨125034⟩ has two cycles: (135) and (420), as (1st→3, 3rd→5, 5th→1) and (4th→2, 2nd→0, 0th→4).
1680 permutations match this pattern.
Examples: ⟨3125604⟩, ⟨2051463⟩, ⟨5432061⟩.
🔳 「⟨⋯ Perm(0,6) ⋯⟩」
0,6 are adjacent.
1440 permutations match this pattern.
Examples: ⟨2351064⟩, ⟨5241063⟩, ⟨4135260⟩.
#125034_v2.3
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 1 │ │ │ │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 6 │ 1 │ │ │ │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 6 │ 1 │ │ 5 │ │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 6 │ 1 │ │ 5 │ 0 │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 6 │ 1 │ 2 │ 5 │ 0 │ 3 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-02-13 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. We begin with considering where to place 3. By ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」, there are at least 2 digits at the left of it, and by ✅「⟦0,4⟧ ∋ 3」, it is not in the right corner. Therefore, the possible positions are: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│*4 │*3 │*2 │*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ ▬ │ ▬ │ ▬ │ ▬ │ │ └───┴───┴───┴───┴───┴───┴───┘ (1) We claim that 3 = [1st] actually. ------------------------------ (1.1) If 3 = [4th], then by ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」 we have: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│ 5▲│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 1 │ 2 │ 3 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Observe that ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」 implies 1 != [6th]. Hence, the above is a contradiction. (1.2) Else if 3 = [3rd], then to match ✅「⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we need ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│ 3▲│2nd│ 1▲│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ │ 3 │ │ 1 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」 we need [6th] = 4: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ 0 │ │ 3 │ │ 1 │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ But then we could not match ✅「⟦0,4⟧ ∋ 3」. (1.3) Else, suppose 3 = [2nd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ │ │ 3 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ By ✅「⟦0,4⟧ ∋ 3」, one of the following holds: (i) ⟨⋯ 0 ⋯ 3 ⋯ 4 ⋯⟩ (ii) ⟨⋯ 4 ⋯ 3 ⋯ 0 ⋯⟩ In view of ✅「⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we cannot place 0 at 1st or 0th. Therefore, case (i) holds and 4 = [1st] | [0th]. The same pattern then implies that 4 <= max{ [1st], [0th] } < [3rd]. We now consider how to place 2. The above indicates that [3rd] != 2. By ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」, it is at the left of 3, and 1 is at the left of it. There are only two possible positions: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ * │ * │ │ 3 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ To match both ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」 and ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」, we cannot have [5th] = 2. So, [4th] = 2. It then follows from these two patterns that [5th] = 1: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│ 4▲│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 2 │ │ 3 │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ │ │ 1 │ 2 │ │ 3 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ However, it results in a contradiction wherever 0 is placed: ● If 0 = [6th], then we could not match ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」; ● Else if 0 = [3rd] | [1st] | [0th], then we could not match ✅「⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」. ------------------------------ Using (1.1), (1.2), and (1.3), our claim in (1) is verified. Accordingly, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 3 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Here, to match ✅「⟦0,4⟧ ∋ 3」, in view of ✅「⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we need 4 = [0th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ 3 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 3 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ We continue by considering where to place 1. ● We have 1 != [6th] by ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」. ● We have 1 != [3rd] by ✅「⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」. ● We have 1 != [2nd] by ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」. Therefore, 1 = [5th] | [4th] : ┌───┬───┬───┬───┬───┬───┬───┐ │6th│*5 │*4 │3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ ▬ │ ▬ │ │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ (2) We show that 1 = [5th] indeed. ------------------------------ If on the contrary 1 = [4th], then to match ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」, in view of ✅「⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we have 2 = [2nd]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ │ 1 │ │ │ 3 │ 4 │ ├───┼───┼───┼───┼───┼───┼───┤ │ │ │ 1 │ │ 2 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, we have to place 0 at 5th in view of ✅「⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」 and ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ 1 │ │ 2 │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ It is a contradiction however, as we could not avoid matching ⛔「⟨⋯ Perm(0,6) ⋯⟩」 or ⛔「0 ∾ 3 ∾ 6」. ------------------------------ We have verified our claim in (2). Accordingly, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 1 │ │ │ │ 3 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we consider the value of [6th] and [3rd]. ● By ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」, we have [6th] != 0. ● By ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」, we have [6th] != 2. ● By ✅「⟨ ⁵ᵗʰd ³ʳᵈa ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we have [3rd] > 4. It follows that { [6th], [3rd] } = {5,6}. (3) We proceed to show that ([6th], [3rd]) = (6, 5). ------------------------------ If on the contrary ([6th], [3rd]) = (5, 6): ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 5 │ 1 │ │ 6 │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Then we would match ⛔「⟨⋯ Perm(0,6) ⋯⟩」, which is a contradiction. ------------------------------ Therefore, back to (3), we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ │ │ │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 6 │ 1 │ │ │ │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 6 │ 1 │ │ 5 │ │ 3 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨? ⋯ 1 (?−6) ⋯ 0 ⋯⟩」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 6 │ 1 │ │ 5 │ │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 6 │ 1 │ │ 5 │ 0 │ 3 │ 4 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 6 │ 1 │ 2 │ 5 │ 0 │ 3 │ 4 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.3
No comments:
Post a Comment