Web link

2024-02-13 Q1(m=6)

Rearrange the digits in ⟨1263045⟩ to meet the rules below.

⟨6th 5th 4th 3rd 2nd 1st 0th⟩

✅Match
⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d
⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)
⟦0,4⟧ ∋ 3
⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩

⛔Avoid
⟨? ⋯ 1 (?−6) ⋯ 0 ⋯⟩
0 ∾ 3 ∾ 6
⟨⋯ Perm(0,6) ⋯⟩

----- Information -----

🔲 「⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」
210 permutations match this pattern.
Examples: ⟨5016234⟩, ⟨3026415⟩, ⟨6024513⟩.

🔲 「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」
?, 1, (?−2) are three different numbers.
1440 permutations match this pattern.
Examples: ⟨4035162⟩, ⟨4503126⟩, ⟨5130642⟩.

🔲 「⟦0,4⟧ ∋ 3」
The closed interval given by 0 and 4 contains 3.
1680 permutations match this pattern.
Examples: ⟨6013254⟩, ⟨6013542⟩, ⟨4361205⟩.

🔲 「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」
840 permutations match this pattern.
Examples: ⟨4126305⟩, ⟨1462035⟩, ⟨4015623⟩.

🔳 「⟨? ⋯ 1 (?−6) ⋯ 0 ⋯⟩」
?, 1, (?−6) are three different numbers.
120 permutations match this pattern.
Examples: ⟨6254103⟩, ⟨6253410⟩, ⟨6510324⟩.

🔳 「0 ∾ 3 ∾ 6」
0,3,6 are in the same cycle.
A permutation can be decomposed into cycles. For example, ⟨125034⟩ has two cycles: (135) and (420), as (1st→3, 3rd→5, 5th→1) and (4th→2, 2nd→0, 0th→4).
1680 permutations match this pattern.
Examples: ⟨3125604⟩, ⟨2051463⟩, ⟨5432061⟩.

🔳 「⟨⋯ Perm(0,6) ⋯⟩」
0,6 are adjacent.
1440 permutations match this pattern.
Examples: ⟨2351064⟩, ⟨5241063⟩, ⟨4135260⟩.


#125034_v2.3



       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 3 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │   │   │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 1 │   │   │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 6 │ 1 │   │   │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 6 │ 1 │   │ 5 │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 6 │ 1 │   │ 5 │ 0 │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 6 │ 1 │ 2 │ 5 │ 0 │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2024-02-13 Q1(m=6)
═══════════════════════════

Notation: if nth -> a, then we write [nth] = a.

We begin with considering where to place 3. By ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」, there are at least 2 digits at the left of it, and by ✅「⟦0,4⟧ ∋ 3」, it is not in the right corner. Therefore, the possible positions are:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│*4 │*3 │*2 │*1 │0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ ▬ │ ▬ │ ▬ │ ▬ │   │
└───┴───┴───┴───┴───┴───┴───┘

(1) We claim that 3 = [1st] actually.

------------------------------

(1.1) If 3 = [4th], then by ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」 we have:

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│ 5▲│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 1 │ 2 │ 3 │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Observe that ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」 implies 1 != [6th]. Hence, the above is a contradiction.

(1.2) Else if 3 = [3rd], then to match ✅「⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we need

┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5▲│4th│ 3▲│2nd│ 1▲│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │   │ 3 │   │ 1 │ 2 │
└───┴───┴───┴───┴───┴───┴───┘

Then, to match ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」 we need [6th] = 4:

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 4 │ 0 │   │ 3 │   │ 1 │ 2 │
└───┴───┴───┴───┴───┴───┴───┘

But then we could not match ✅「⟦0,4⟧ ∋ 3」.

(1.3) Else, suppose 3 = [2nd]:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │   │ 3 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

By ✅「⟦0,4⟧ ∋ 3」, one of the following holds:

(i) ⟨⋯ 0 ⋯ 3 ⋯ 4 ⋯⟩

(ii) ⟨⋯ 4 ⋯ 3 ⋯ 0 ⋯⟩

In view of ✅「⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we cannot place 0 at 1st or 0th. Therefore, case (i) holds and 4 = [1st] | [0th]. The same pattern then implies that

4 <= max{ [1st], [0th] } < [3rd].

We now consider how to place 2. The above indicates that [3rd] != 2. By ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」, it is at the left of 3, and 1 is at the left of it. There are only two possible positions:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ * │ * │   │ 3 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

To match both ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」 and ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」, we cannot have [5th] = 2. So, [4th] = 2. It then follows from these two patterns that [5th] = 1:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5▲│ 4▲│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 2 │   │ 3 │   │   │
├───┼───┼───┼───┼───┼───┼───┤
│   │ 1 │ 2 │   │ 3 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

However, it results in a contradiction wherever 0 is placed:

● If 0 = [6th], then we could not match ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」;

● Else if 0 = [3rd] | [1st] | [0th], then we could not match ✅「⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」.

------------------------------

Using (1.1), (1.2), and (1.3), our claim in (1) is verified. Accordingly, we have

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │   │   │   │   │ 3 │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 6 │   │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Here, to match ✅「⟦0,4⟧ ∋ 3」, in view of ✅「⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we need 4 = [0th]:

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │   │   │ 3 │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │   │   │   │   │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ 6 │   │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

We continue by considering where to place 1. 

● We have 1 != [6th] by ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」.

● We have 1 != [3rd] by ✅「⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」.

● We have 1 != [2nd] by ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」.

Therefore, 1 = [5th] | [4th] :

┌───┬───┬───┬───┬───┬───┬───┐
│6th│*5 │*4 │3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ ▬ │ ▬ │   │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

(2) We show that 1 = [5th] indeed.

------------------------------

If on the contrary 1 = [4th], then to match ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」, in view of ✅「⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we have 2 = [2nd]:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4▲│3rd│ 2▲│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │ 1 │   │   │ 3 │ 4 │
├───┼───┼───┼───┼───┼───┼───┤
│   │   │ 1 │   │ 2 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │ 6 │   │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Then, we have to place 0 at 5th in view of ✅「⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」 and ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5▲│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 0 │ 1 │   │ 2 │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

It is a contradiction however, as we could not avoid matching ⛔「⟨⋯ Perm(0,6) ⋯⟩」 or ⛔「0 ∾ 3 ∾ 6」.

------------------------------

We have verified our claim in (2). Accordingly, we have

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │   │   │   │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │   │ 1 │   │   │   │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │ 6 │   │ 0 │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Next, we consider the value of [6th] and [3rd].

● By ✅「⟨? ⋯ 1 ⋯ (?−2) ⋯⟩ (?≠3)」, we have [6th] != 0.

● By ✅「⟨⋯ 1 ⋯ 2 ⋯ 3 ⋯⟩」, we have [6th] != 2.

● By ✅「⟨   ⁵ᵗʰd   ³ʳᵈa   ¹ˢᵗc ⁰ᵗʰb ⟩, a > b > c > d」, we have [3rd] > 4.

It follows that { [6th], [3rd] } = {5,6}.

(3) We proceed to show that ([6th], [3rd]) = (6, 5).

------------------------------

If on the contrary ([6th], [3rd]) = (5, 6):

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│5th│4th│ 3▲│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 5 │ 1 │   │ 6 │   │ 3 │ 4 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Then we would match ⛔「⟨⋯ Perm(0,6) ⋯⟩」, which is a contradiction.

------------------------------

Therefore, back to (3), we get

       ┌───┬───┬───┬───┬───┬───┬───┐
       │ 6■│5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 1 │   │   │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 6 │ 1 │   │   │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 6 │ 1 │   │ 5 │   │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │ 2 │   │   │ 0 │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨? ⋯ 1 (?−6) ⋯ 0 ⋯⟩」, we finish by

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│ 4■│3rd│ 2■│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 6 │ 1 │   │ 5 │   │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 6 │ 1 │   │ 5 │ 0 │ 3 │ 4 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 6 │ 1 │ 2 │ 5 │ 0 │ 3 │ 4 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.3

No comments:

Post a Comment