Web link

2024-01-23 Q1(m=6)

Rearrange the digits in ⟨1263045⟩ to meet the rules below.

⟨6th 5th 4th 3rd 2nd 1st 0th⟩

✅Match
5th|3rd|2nd|1st → 2
⟨   ⁵ᵗʰ↓     ²ⁿᵈ↓   ⁰ᵗʰ↑ ⟩ after 2×⟨←⟩
⟨⋯ 6 ⋯ 2 ⋯ 4 ⋯ 3 ⋯⟩
⟨ ⁶ᵗʰ↑ ⁵ᵗʰ↓ ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↓ ¹ˢᵗ↑ ⁰ᵗʰ↓ ⟩ after ⟨⇌⟩
⟨ ⁶ᵗʰa   ⁴ᵗʰb   ²ⁿᵈc     ⟩, (abc)₁₀ ≥ 53

⛔Avoid
⟨⋯ ? ⋯ 4 ⋯ (?−2)⟩ (?≠4,6)

#125034_v2.2



       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 6 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 6 │   │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ 1 │ 6 │   │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │ 6 │ 0 │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │ 6 │ 0 │ 2 │   │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 6 │ 0 │ 2 │ 4 │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 1 │ 6 │ 0 │ 2 │ 4 │ 5 │ 3 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

Proof of 2024-01-23 Q1(m=6)
═══════════════════════════

Notation: if nth -> a, then we write [nth] = a.

We begin with locating the position of 6. Let [n-th] = 6. By ✅「⟨⋯ 6 ⋯ 2 ⋯ 4 ⋯ 3 ⋯⟩」, we have n >= 3.

┌───┬───┬───┬───┬───┬───┬───┐
│*6 │*5 │*4 │*3 │2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │   │ / │ / │ / │
└───┴───┴───┴───┴───┴───┴───┘

Since 6 is the maximum digit, it is at the "↓" or "=" positions of ✅「⟨ ⁶ᵗʰ↑ ⁵ᵗʰ↓ ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↓ ¹ˢᵗ↑ ⁰ᵗʰ↓ ⟩ after ⟨⇌⟩」. Therefore, we have

(1) n = 5 or 3:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│*5 │4th│*3 │2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ / │   │ / │   │ / │ / │ / │
└───┴───┴───┴───┴───┴───┴───┘

If 6 = [3rd], then it follows from ✅「⟨⋯ 6 ⋯ 2 ⋯ 4 ⋯ 3 ⋯⟩」 that

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3▲│ 2▲│ 1▲│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │   │   │ 6 │ 2 │ 4 │ 3 │
└───┴───┴───┴───┴───┴───┴───┘

and we would match ⛔「⟨⋯ ? ⋯ 4 ⋯ (?−2)⟩ (?≠4,6)」, which is a contradiction. Hence, back to (1), we have 6 = [5th].

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│ 5■│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │   │ 6 │   │   │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │   │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Next, we consider where to place 2. By ✅「⟨⋯ 6 ⋯ 2 ⋯ 4 ⋯ 3 ⋯⟩」, there are at least two digits at the right of 2. Combining this with ✅「5th|3rd|2nd|1st → 2」, we have

(2) 2 = [3rd] or [2nd].

If 2 = [2nd], then by ✅「⟨⋯ 6 ⋯ 2 ⋯ 4 ⋯ 3 ⋯⟩」 we have

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│*2 │*1 │*0 │
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│   │ 6 │   │   │ 2 │ 4 │ 3 │
└───┴───┴───┴───┴───┴───┴───┘

and we would match ⛔「⟨⋯ ? ⋯ 4 ⋯ (?−2)⟩ (?≠4,6)」, which is a contradiction. Hence, back to (2), we have 2 = [3rd].

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│ 3■│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 6 │   │   │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │   │ 6 │   │ 2 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

We proceed to determine the value of [6th]. It is not 4 or 3 by ✅「⟨⋯ 6 ⋯ 2 ⋯ 4 ⋯ 3 ⋯⟩」, so

(3) [6th] = 0|1|5. We claim that [6th] = 1 actually.

------------------------------

(3.1) If [6th] = 0, then to match ✅「⟨ ⁶ᵗʰa   ⁴ᵗʰb   ²ⁿᵈc     ⟩, (abc)₁₀ ≥ 53」, we need [4th] = 5:

┌───┬───┬───┬───┬───┬───┬───┐
│ 6▲│5th│ 4▲│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 0 │ 6 │   │ 2 │   │   │   │
├───┼───┼───┼───┼───┼───┼───┤
│ 0 │ 6 │ 5 │ 2 │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │   │   │ 3 │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

However, note that we have put 5 at a "↑" position of ✅「⟨ ⁶ᵗʰ↑ ⁵ᵗʰ↓ ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↓ ¹ˢᵗ↑ ⁰ᵗʰ↓ ⟩ after ⟨⇌⟩」. Since 5 can only be increased by using 6, it is a contradiction.

(3.2) Else if [6th] = 5, then again we have put 5 at a "↑" position of ✅「⟨ ⁶ᵗʰ↑ ⁵ᵗʰ↓ ⁴ᵗʰ↑ ³ʳᵈ= ²ⁿᵈ↓ ¹ˢᵗ↑ ⁰ᵗʰ↓ ⟩ after ⟨⇌⟩」, which is a contradiction.

------------------------------

By (3.1) and (3.2), we have verified our claim in (3). Accordingly,

       ┌───┬───┬───┬───┬───┬───┬───┐
       │ 6■│5th│4th│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │   │ 6 │   │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ 1 │ 6 │   │ 2 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Next, we determine the value of [4th]. By ✅「⟨⋯ 6 ⋯ 2 ⋯ 4 ⋯ 3 ⋯⟩」, it is not 3 or 4. It is not 5 as well, as argued in (3.1). Therefore, [4th] = 0.

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│ 4■│3rd│2nd│1st│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │ 6 │   │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 1 │ 6 │ 0 │ 2 │   │   │   │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │   │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

We check the value of [0th] now. By ✅「⟨⋯ 6 ⋯ 2 ⋯ 4 ⋯ 3 ⋯⟩」, it is not 4. It is not 5 as well, for otherwise we would have [0th] > [2nd], and ✅「⟨   ⁵ᵗʰ↓     ²ⁿᵈ↓   ⁰ᵗʰ↑ ⟩ after 2×⟨←⟩」 cannot be matched:

┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│ 0▲│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 1 │ 6 │ 0 │ 2 │   │   │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │ 3 │   │ 4 │   │
└───┴───┴───┴───┴───┴───┴───┘

Therefore, we need [0th] = 3.

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│2nd│1st│ 0■│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │ 6 │ 0 │ 2 │   │   │   │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 1 │ 6 │ 0 │ 2 │   │   │ 3 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘

Finally, to avoid ⛔「⟨⋯ ? ⋯ 4 ⋯ (?−2)⟩ (?≠4,6)」, we finish by

       ┌───┬───┬───┬───┬───┬───┬───┐
       │6th│5th│4th│3rd│ 2■│ 1■│0th│▒
       ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
       │ 1 │ 6 │ 0 │ 2 │   │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 1 │ 6 │ 0 │ 2 │ 4 │   │ 3 │▒
       ├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 1 │ 6 │ 0 │ 2 │ 4 │ 5 │ 3 │▒
       └───┴───┴───┴───┴───┴───┴───┘▒
        ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒

--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│   │   │   │   │   │   │   │
└───┴───┴───┴───┴───┴───┴───┘

Q.E.D.

#125034_v2.2

No comments:

Post a Comment