Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
Jump(2,4) = 3
⟨Perm(0,3,4,6) Perm(1,2,5)⟩
⟨⋯ 0 ⋯ ? ⋯ 1 (?+3)⟩ (?≠1)
⛔Avoid
4th → a, 2nd → b, a+b=2+4n
5th → a, 2nd → b, |a-b|=2
5th → 3
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 1 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ │ 2 │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 4 │ │ │ │ 2 │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ 6 │ │ │ 2 │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 6 │ 3 │ │ 2 │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 6 │ 3 │ 0 │ 2 │ 1 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-01-16 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, our first step follows from ✅「⟨⋯ 0 ⋯ ? ⋯ 1 (?+3)⟩ (?≠1)」. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 1 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, by ✅「⟨Perm(0,3,4,6) Perm(1,2,5)⟩」, we have [0th] = 2|5. Since [0th] >= 3 by ✅「⟨⋯ 0 ⋯ ? ⋯ 1 (?+3)⟩ (?≠1)」, we see that [0th] = 5. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ 1 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 1 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Then, ✅「⟨Perm(0,3,4,6) Perm(1,2,5)⟩」 implies [2nd] = 2, and it follows from ✅「Jump(2,4) = 3」 that [6th] = 4: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ │ │ │ 2 │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 4 │ │ │ │ 2 │ 1 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ We determine the value of [5th]. To avoid ⛔「5th → 3」, it is not 3, and to avoid ⛔「5th → a, 2nd → b, |a-b|=2」, it is not 0. So, [5rh] = 6. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 4 │ │ │ │ 2 │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ 6 │ │ │ 2 │ 1 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「4th → a, 2nd → b, a+b=2+4n」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 4 │ 6 │ │ │ 2 │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 6 │ 3 │ │ 2 │ 1 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 6 │ 3 │ 0 │ 2 │ 1 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment