Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
Jump(2,4) = 3
⟨Perm(0,3,4,6) Perm(1,2,5)⟩
⟨⋯ 0 ⋯ ? ⋯ 1 (?+3)⟩ (?≠1)
⛔Avoid
4th → a, 2nd → b, a+b=2+4n
5th → a, 2nd → b, |a-b|=2
5th → 3
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ │ │ │ │ 1 │ │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │ │ │ │ │ │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ │ │ │ │ 2 │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 4 │ │ │ │ 2 │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 6 │ │ │ 2 │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 6 │ 3 │ │ 2 │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 4 │ 6 │ 3 │ 0 │ 2 │ 1 │ 5 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
Proof of 2024-01-16 Q1(m=6)
═══════════════════════════
Notation: if nth -> a, then we write [nth] = a.
Plainly, our first step follows from ✅「⟨⋯ 0 ⋯ ? ⋯ 1 (?+3)⟩ (?≠1)」.
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│ 1■│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ │ │ │ │ 1 │ │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ 2 │ 6 │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘
Next, by ✅「⟨Perm(0,3,4,6) Perm(1,2,5)⟩」, we have [0th] = 2|5. Since [0th] >= 3 by ✅「⟨⋯ 0 ⋯ ? ⋯ 1 (?+3)⟩ (?≠1)」, we see that [0th] = 5.
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│ 0■│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ │ │ │ │ │ 1 │ │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │ │ │ │ │ │ 1 │ 5 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ 2 │ 6 │ 3 │ 0 │ 4 │ │
└───┴───┴───┴───┴───┴───┴───┘
Then, ✅「⟨Perm(0,3,4,6) Perm(1,2,5)⟩」 implies [2nd] = 2, and it follows from ✅「Jump(2,4) = 3」 that [6th] = 4:
┌───┬───┬───┬───┬───┬───┬───┐
│ 6■│5th│4th│3rd│ 2■│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ │ │ │ │ │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ │ │ │ │ 2 │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 4 │ │ │ │ 2 │ 1 │ 5 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ │ 6 │ 3 │ 0 │ │ │
└───┴───┴───┴───┴───┴───┴───┘
We determine the value of [5th]. To avoid ⛔「5th → 3」, it is not 3, and to avoid ⛔「5th → a, 2nd → b, |a-b|=2」, it is not 0. So, [5rh] = 6.
┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5■│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ 4 │ │ │ │ 2 │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 6 │ │ │ 2 │ 1 │ 5 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ 3 │ 0 │ │ │
└───┴───┴───┴───┴───┴───┴───┘
Finally, to avoid ⛔「4th → a, 2nd → b, a+b=2+4n」, we finish by
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4■│ 3■│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ 4 │ 6 │ │ │ 2 │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 6 │ 3 │ │ 2 │ 1 │ 5 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 4 │ 6 │ 3 │ 0 │ 2 │ 1 │ 5 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ │ │ │ │
└───┴───┴───┴───┴───┴───┴───┘
Q.E.D.
#125034_v2.2