Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨? ⋯ 3 (?−1) ⋯ 6 ⋯⟩ (?≠3,4)
⟨⋯ 0 ⋯ ? ⋯ 4 (?−1)⟩ (?≠4,5)
⛔Avoid
⟨⋯ a ⋯ 0 ⋯⟩, a = 1|3|4|5
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 2 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ 0 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ 0 │ │ │ │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ 0 │ │ │ │ 4 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 0 │ 3 │ │ │ 4 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 0 │ 3 │ 1 │ │ 4 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 3 │ 1 │ 6 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2024-01-02 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. We begin with determining the value of [6th]. By ⛔「⟨⋯ a ⋯ 0 ⋯⟩, a = 1|3|4|5」, it is not 1|3|4|5. Therefore, [6th] = 0|2|6. It is not 0 or 6 by ✅「⟨? ⋯ 3 (?−1) ⋯ 6 ⋯⟩ (?≠3,4)」. Accordingly, we have ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 2 │ │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we consider where to place 0. To avoid ⛔「⟨⋯ a ⋯ 0 ⋯⟩, a = 1|3|4|5」, 0 is at the left of 1,3,4,5, so it is at 5th or 4th. If 0 = [4th], then the preceding pattern implies that [5th] = 6: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 6 │ 0 │ - │ - │ - │ - │ └───┴───┴───┴───┴───┴───┴───┘ ("-" are occupied by 1|3|4|5) However, this contradicts ✅「⟨? ⋯ 3 (?−1) ⋯ 6 ⋯⟩ (?≠3,4)」. Therefore, we have 0 = [5th]: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ 0 │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, to match ✅「⟨⋯ 0 ⋯ ? ⋯ 4 (?−1)⟩ (?≠4,5)」, plainly we need [1st] = 4. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ 0 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ 0 │ │ │ │ 4 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ We proceed to determine the value of [0th]. By ✅「⟨? ⋯ 3 (?−1) ⋯ 6 ⋯⟩ (?≠3,4)」, we need to match (1) ⟨2 ⋯ 3 1 ⋯ 6 ⋯⟩ A fortiori, 3,1 are not in the right corner. We have [0th] != 6 as well, because by ✅「⟨⋯ 0 ⋯ ? ⋯ 4 (?−1)⟩ (?≠4,5)」 we have [0th] <= 5. Consequently, we have [0th] = 5. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ 0 │ │ │ │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ 0 │ │ │ │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, there is only one way to match (1). We finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ 0 │ │ │ │ 4 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 0 │ 3 │ │ │ 4 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 0 │ 3 │ 1 │ │ 4 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 3 │ 1 │ 6 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment