Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
6th → a, 0th → b, ab=0
3rd → a, 2nd → b, ab=0+6n
5th → a, 2nd → b, a+b=0+5n
⛔Avoid
⟨ ⁵ᵗʰb ⁴ᵗʰa ⟩, a > b
Sim⟨ ⁶ᵗʰ3 ⁵ᵗʰ5 ⁴ᵗʰ2 ³ʳᵈ6 ²ⁿᵈ0 ¹ˢᵗ1 ⁰ᵗʰ4 ⟩ ≥ 1
⟨⋯ 4 ⋯ 1 ⋯ 3 ⋯ 2 ⋯⟩
⟨⋯ 1 ⋯ ? ⋯ 5 (?−1)⟩ (?≠5,6)
⟨⋯ 2 ⋯ a ⋯⟩, a = 0|1|3|4|5
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 0 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 0 │ │ │ │ │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 0 │ 4 │ │ │ │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 0 │ 4 │ │ │ 6 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 0 │ 4 │ │ 1 │ 6 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 0 │ 4 │ 3 │ 1 │ 6 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 0 │ 4 │ 3 │ 1 │ 6 │ 5 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-19 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. To match ✅「6th → a, 0th → b, ab=0」, we need 0 = [6th] or [0th]. We need to avoid ⛔「⟨⋯ 2 ⋯ a ⋯⟩, a = 0|1|3|4|5」 too, so 0 = [6th]. ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 0 │ │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ (1) Note that ⛔「⟨⋯ 2 ⋯ a ⋯⟩, a = 0|1|3|4|5」 implies 2 is at the right of 0,1,3,4,5. Therefore, 2 = [1st] or [0th]. Also, note that ✅「5th → a, 2nd → b, a+b=0+5n」 implies ┌───┬───┬───┬───┬───┬───┬───┐ │6th│*5 │4th│3rd│*2 │1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ A │ │ │ B │ │ │ └───┴───┴───┴───┴───┴───┴───┘ (2) where A + B = 5 or 10. In view of (1), there are two possibilities: (2.1) {A,B} = {1,4}; (2.2) {A,B} = {4,6}. We show that case (2.2) holds actually. ------------------------------ If on the contrary case (2.1) holds, then to avoid ⛔「⟨ ⁵ᵗʰb ⁴ᵗʰa ⟩, a > b」, we need (A,B) = (4,1): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 4 │ │ │ 1 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Then, to match ✅「3rd → a, 2nd → b, ab=0+6n」, we need [3rd] = 6: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 4 │ │ 6 │ 1 │ │ │ └───┴───┴───┴───┴───┴───┴───┘ However, it follows that we would match ⛔「Sim⟨ ⁶ᵗʰ3 ⁵ᵗʰ5 ⁴ᵗʰ2 ³ʳᵈ6 ²ⁿᵈ0 ¹ˢᵗ1 ⁰ᵗʰ4 ⟩ ≥ 1」, which is a contradiction. ------------------------------ We have verified that case (2.2) holds. In particular, 6 = [5th] or [2nd]. Combining this with (1), we see that 2 is at the right of all other numbers. Consequently, 2 = [0th]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 0 │ │ │ │ │ │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Furthermore, as (2.2) holds, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│*5 │4th│3rd│*2 │1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ A │ │ │ B │ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ where (A,B) = (4,6) or (6,4). (3) We claim that (A,B) = (4,6) actually. ------------------------------ For, if on the contrary (A,B) = (6,4): ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5▲│4th│3rd│ 2▲│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 6 │ │ │ 4 │ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ then there is only one way to match ✅「3rd → a, 2nd → b, ab=0+6n」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3▲│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 0 │ 6 │ │ 3 │ 4 │ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ No matter how we place 1,5, we would match ⛔「Sim⟨ ⁶ᵗʰ3 ⁵ᵗʰ5 ⁴ᵗʰ2 ³ʳᵈ6 ²ⁿᵈ0 ¹ˢᵗ1 ⁰ᵗʰ4 ⟩ ≥ 1」 or ⛔「⟨⋯ 1 ⋯ ? ⋯ 5 (?−1)⟩ (?≠5,6)」. This shows a contradiction. ------------------------------ Our claim in (3) is thus verified. Accordingly ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ │ │ │ │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 0 │ 4 │ │ │ │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 0 │ 4 │ │ │ 6 │ │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ We consider where to place 1. To avoid ⛔「Sim⟨ ⁶ᵗʰ3 ⁵ᵗʰ5 ⁴ᵗʰ2 ³ʳᵈ6 ²ⁿᵈ0 ¹ˢᵗ1 ⁰ᵗʰ4 ⟩ ≥ 1」, it is not at 1st, and to avoid ⛔「⟨⋯ 4 ⋯ 1 ⋯ 3 ⋯ 2 ⋯⟩」, it is not at 4th. Therefore, 1 = [3rd]. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ 4 │ │ │ 6 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 0 │ 4 │ │ 1 │ 6 │ │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨⋯ 4 ⋯ 1 ⋯ 3 ⋯ 2 ⋯⟩」, we have 3 = [4th]. We finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 0 │ 4 │ │ 1 │ 6 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 0 │ 4 │ 3 │ 1 │ 6 │ │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 0 │ 4 │ 3 │ 1 │ 6 │ 5 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment