Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨ ⁴ᵗʰa ¹ˢᵗb ⟩, (ab)₁₀ ≥ 52
⟨⋯ ? ⋯ 4 ⋯ (?+1)⟩ (?≠4,3)
⟨⋯ ? ⋯ 5 ⋯ (?−1)⟩ (?≠5,6)
6th → a, 2nd → b, a+b=6
⛔Avoid
6th|3rd|2nd|1st|0th → 1
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 1 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 1 │ │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 1 │ 6 │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ 1 │ 6 │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 1 │ 6 │ │ 4 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 1 │ 6 │ │ 4 │ 5 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 1 │ 6 │ 0 │ 4 │ 5 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-16 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Note that by ✅「⟨ ⁴ᵗʰa ¹ˢᵗb ⟩, (ab)₁₀ ≥ 52」, we have (1) [4th] = 5|6. We consider where to place 1. By ⛔「6th|3rd|2nd|1st|0th → 1」, we have 1 = [5th] or [4th]. To match (1), we have 1 != [4th]. Therefore ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 1 │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we determine the value of [0th]. As 1 has been used, it follows from ✅「⟨⋯ ? ⋯ 4 ⋯ (?+1)⟩ (?≠4,3)」 and ✅「⟨⋯ ? ⋯ 5 ⋯ (?−1)⟩ (?≠5,6)」 that [0th] = 2 or 3. (2) We proceed to show that [0th] = 3. ------------------------------ If on the contrary [0th] = 2: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 1 │ │ │ │ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ then to match ✅「6th → a, 2nd → b, a+b=6」, we have ┌───┬───┬───┬───┬───┬───┬───┐ │*6 │5th│4th│3rd│*2 │1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ X │ 1 │ │ │ Y │ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ where {X,Y} = {0,6}. It implies [4th] != 6, so to match (1), we have [4th] = 5: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ X │ 1 │ 5 │ │ Y │ │ 2 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ 3 │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ But then we would never match ✅「⟨⋯ ? ⋯ 5 ⋯ (?−1)⟩ (?≠5,6)」, which is a contradiction. ------------------------------ We have verified (2). Accordingly, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 1 │ │ │ │ │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Now ✅「⟨⋯ ? ⋯ 4 ⋯ (?+1)⟩ (?≠4,3)」 and ✅「⟨⋯ ? ⋯ 5 ⋯ (?−1)⟩ (?≠5,6)」 becomes ⟨⋯ 2 ⋯ 4 ⋯ 3⟩, and ⟨⋯ 4 ⋯ 5 ⋯ 3⟩; so we have to match the following pattern: (3) ⟨⋯ 2 ⋯ 4 ⋯ 5 ⋯ 3⟩. A fortiori, 5 != [4th]. Hence, by (1), we have [4th] = 6. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 1 │ 6 │ │ │ │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ To match ✅「6th → a, 2nd → b, a+b=6」, we need {[6th], [2nd]} = {2,4}. Combining this with (3), we have ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 1 │ 6 │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ 1 │ 6 │ │ │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 1 │ 6 │ │ 4 │ │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, there is only one way to match (3). We finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ 1 │ 6 │ │ 4 │ │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 1 │ 6 │ │ 4 │ 5 │ 3 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 1 │ 6 │ 0 │ 4 │ 5 │ 3 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment