Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟦2,6⟧ ∋ 1,3
⟨? ⋯ 0 (?−1) ⋯ 4 ⋯⟩ (?≠1)
⟨⋯ Perm(1,3,4) ⋯⟩
2nd → a, 1st → b, a+b=9
⛔Avoid
3rd → 0|2|4|6
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 0 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ 0 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ 0 │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ 0 │ 1 │ 3 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 0 │ 1 │ 3 │ 4 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 0 │ 1 │ 3 │ 4 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 1 │ 3 │ 4 │ 5 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-14 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. To match ✅「2nd → a, 1st → b, a+b=9」, we have {a,b} = {3,6} or {4,5}, where a:=[2nd] and b:=[1st]. Combining this with ✅「⟨⋯ Perm(1,3,4) ⋯⟩」, we have: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4▲│ 3▲│ 2▲│*1 │0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ (1) │ │ │ X │ Y │ Z │ b │ │ └───┴───┴───┴───┴───┴───┴───┘ where {X,Y,Z} = {1,3,4}, and b ∈ {5,6}. Observe that ✅「⟨? ⋯ 0 (?−1) ⋯ 4 ⋯⟩ (?≠1)」 and ✅「⟨⋯ Perm(1,3,4) ⋯⟩」 imply the following pattern: (2) ⟨? ⋯ 0 ⋯ Perm(1,3,4) ⋯⟩ (?=6|5|2) To match (1) and (2), we need [5th] = 0: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ X │ Y │ Z │ b │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ 2 │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ We proceed to determine the value of [6th]. To match ✅「⟦2,6⟧ ∋ 1,3」, we need [6th] = 2|6, for otherwise 1,3 would not be between 2 and 6. In view of ✅「⟨? ⋯ 0 (?−1) ⋯ 4 ⋯⟩ (?≠1)」, it is not possible that [6th] = 6, for X != 5. Hence, [6th] = 2, and then the preceding pattern gives X = 1 as well. ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│ 4■│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ 0 │ 1 │ Y │ Z │ b │ │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, by ⛔「3rd → 0|2|4|6」, we get Y = 3 and Z = 4. So, our first five steps are: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ 0 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ 0 │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ 0 │ 1 │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ 0 │ 1 │ 3 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ 0 │ 1 │ 3 │ 4 │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ We finish by matching ✅「2nd → a, 1st → b, a+b=9」: ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ 0 │ 1 │ 3 │ 4 │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ 0 │ 1 │ 3 │ 4 │ 5 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 0 │ 1 │ 3 │ 4 │ 5 │ 6 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment