Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 5 ⋯ ? ⋯ 6 (?−1)⟩ (?≠6)
⟨⋯ Perm(0,4,6) ⋯⟩
⟨? 3 ⋯ (?−4) ⋯ 2 ⋯⟩
⛔Avoid
4th|3rd|2nd → 2
⟨⋯ 4 ⋯ 0 ⋯ 6 ⋯⟩
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 6 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 3 │ │ │ │ 6 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 3 │ │ │ │ 6 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 5 │ 3 │ │ │ │ 6 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 5 │ 3 │ 1 │ │ │ 6 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 5 │ 3 │ 1 │ 0 │ │ 6 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 5 │ 3 │ 1 │ 0 │ 4 │ 6 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-12 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, ✅「⟨⋯ 5 ⋯ ? ⋯ 6 (?−1)⟩ (?≠6)」 implies [1st] = 6, and ✅「⟨? 3 ⋯ (?−4) ⋯ 2 ⋯⟩」 implies [5th] = 3. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 6 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 3 │ │ │ │ 6 │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, by ⛔「4th|3rd|2nd → 2」, we have 2 = [6th] or [0th]. The latter holds because ✅「⟨? 3 ⋯ (?−4) ⋯ 2 ⋯⟩」 implies 2 is not in the left corner. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 3 │ │ │ │ 6 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ │ 3 │ │ │ │ 6 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ As ✅「⟨⋯ 5 ⋯ ? ⋯ 6 (?−1)⟩ (?≠6)」 becomes the pattern ⟨⋯ 5 ⋯ 3 ⋯ 62⟩, we see that 5 = [6th]. ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 3 │ │ │ │ 6 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 5 │ 3 │ │ │ │ 6 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ By ✅「⟨⋯ Perm(0,4,6) ⋯⟩」, 0,4,6 are adjacent, so we have to place 1 at 4th. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 5 │ 3 │ │ │ │ 6 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 5 │ 3 │ 1 │ │ │ 6 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨⋯ 4 ⋯ 0 ⋯ 6 ⋯⟩」, we reach ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 5 │ 3 │ 1 │ │ │ 6 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 5 │ 3 │ 1 │ 0 │ │ 6 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 5 │ 3 │ 1 │ 0 │ 4 │ 6 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment