Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 5 ⋯ ? ⋯ 6 (?−1)⟩ (?≠6)
⟨⋯ Perm(0,4,6) ⋯⟩
⟨? 3 ⋯ (?−4) ⋯ 2 ⋯⟩
⛔Avoid
4th|3rd|2nd → 2
⟨⋯ 4 ⋯ 0 ⋯ 6 ⋯⟩
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ │ │ │ │ 6 │ │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │ │ 3 │ │ │ │ 6 │ │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ │ 3 │ │ │ │ 6 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 3 │ │ │ │ 6 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 3 │ 1 │ │ │ 6 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 3 │ 1 │ 0 │ │ 6 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 5 │ 3 │ 1 │ 0 │ 4 │ 6 │ 2 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
Proof of 2023-12-12 Q1(m=6)
═══════════════════════════
Notation: if nth -> a, then we write [nth] = a.
Plainly, ✅「⟨⋯ 5 ⋯ ? ⋯ 6 (?−1)⟩ (?≠6)」 implies [1st] = 6, and ✅「⟨? 3 ⋯ (?−4) ⋯ 2 ⋯⟩」 implies [5th] = 3.
┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5■│4th│3rd│2nd│ 1■│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ │ │ │ │ 6 │ │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │ │ 3 │ │ │ │ 6 │ │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ 2 │ │ │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘
Next, by ⛔「4th|3rd|2nd → 2」, we have 2 = [6th] or [0th]. The latter holds because ✅「⟨? 3 ⋯ (?−4) ⋯ 2 ⋯⟩」 implies 2 is not in the left corner.
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│ 0■│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ │ 3 │ │ │ │ 6 │ │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ │ 3 │ │ │ │ 6 │ 2 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ │ │ │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘
As ✅「⟨⋯ 5 ⋯ ? ⋯ 6 (?−1)⟩ (?≠6)」 becomes the pattern
⟨⋯ 5 ⋯ 3 ⋯ 62⟩,
we see that 5 = [6th].
┌───┬───┬───┬───┬───┬───┬───┐
│ 6■│5th│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ │ 3 │ │ │ │ 6 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 5 │ 3 │ │ │ │ 6 │ 2 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ │ │ │ 0 │ 4 │ │
└───┴───┴───┴───┴───┴───┴───┘
By ✅「⟨⋯ Perm(0,4,6) ⋯⟩」, 0,4,6 are adjacent, so we have to place 1 at 4th.
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4■│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ 5 │ 3 │ │ │ │ 6 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 5 │ 3 │ 1 │ │ │ 6 │ 2 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ │ 0 │ 4 │ │
└───┴───┴───┴───┴───┴───┴───┘
Finally, to avoid ⛔「⟨⋯ 4 ⋯ 0 ⋯ 6 ⋯⟩」, we reach
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│ 3■│ 2■│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ 5 │ 3 │ 1 │ │ │ 6 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 5 │ 3 │ 1 │ 0 │ │ 6 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 5 │ 3 │ 1 │ 0 │ 4 │ 6 │ 2 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ │ │ │ │
└───┴───┴───┴───┴───┴───┴───┘
Q.E.D.
#125034_v2.2