Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
6th → a, 4th → b, a+b=5
⟨? ⋯ 3 ⋯ (?+2) ⋯⟩ (?≠3,1)
⟨ ⁶ᵗʰa ²ⁿᵈb ¹ˢᵗc ⟩, (abc)₁₀ ≥ 210
⛔Avoid
Jump(0,3) = 0
⟨⋯ 1 ⋯ a ⋯⟩, a = 3|4|6
0th → 0|1|4|6
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 2 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ │ │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ │ 3 │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ │ 3 │ │ │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ │ 3 │ │ 1 │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ │ 3 │ 4 │ 1 │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 6 │ 3 │ 4 │ 1 │ 0 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-09 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Firstly, observe that to avoid ⛔「⟨⋯ 1 ⋯ a ⋯⟩, a = 3|4|6」, we need to match the following patterns: (1) ⟨⋯ 3 ⋯ 1 ⋯⟩ ⟨⋯ 4 ⋯ 1 ⋯⟩ ⟨⋯ 6 ⋯ 1 ⋯⟩ We proceed to determine the value of [6th]. By ✅「⟨? ⋯ 3 ⋯ (?+2) ⋯⟩ (?≠3,1)」, we have [6th] = 0|2|4. In order to match ✅「⟨ ⁶ᵗʰa ²ⁿᵈb ¹ˢᵗc ⟩, (abc)₁₀ ≥ 210」, we cannot have [6th] = 0. Hence [6th] = 2 or 4. If [6th] = 4, then ✅「6th → a, 4th → b, a+b=5」 implies [4th] = 1: ┌───┬───┬───┬───┬───┬───┬───┐ │ 6▲│5th│ 4▲│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ │ │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ │ 4 │ │ 1 │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ But then we cannot match all of the patterns in (1). This is a contradiction. As a result, we have [6th] = 2. ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ 2 │ │ │ │ │ │ │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Next, we check the value of [0th]. To avoid ⛔「0th → 0|1|4|6」, we need [0th] = 2,3,5. It cannot be 2 as we have used it, and it cannot be 3 as we need to match (1). Consequently, we get [0th] = 5. On the other hand, it follows from ✅「6th → a, 4th → b, a+b=5」 that [4th] = 3. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│3rd│2nd│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ │ │ │ │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ 2 │ │ │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 2 │ │ 3 │ │ │ │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ 0 │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Now, we consider where to place 0. By ⛔「Jump(0,3) = 0」, 0 is not adjacent to 3. Also, to match ✅「⟨ ⁶ᵗʰa ²ⁿᵈb ¹ˢᵗc ⟩, (abc)₁₀ ≥ 210」, it cannot be placed at the 2nd position. Hence, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ 3 │ │ │ │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 2 │ │ 3 │ │ │ 0 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Recall that we need to match (1). It can be done only when 1 is placed at the 2nd position. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ 3 │ │ │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 2 │ │ 3 │ │ 1 │ 0 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ │ │ 4 │ │ └───┴───┴───┴───┴───┴───┴───┘ Finally, noting that ✅「⟨? ⋯ 3 ⋯ (?+2) ⋯⟩ (?≠3,1)」 becomes: ⟨2 ⋯ 3 ⋯ 4 ⋯⟩, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 2 │ │ 3 │ │ 1 │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 2 │ │ 3 │ 4 │ 1 │ 0 │ 5 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 2 │ 6 │ 3 │ 4 │ 1 │ 0 │ 5 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment