Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ Perm(1,4) ⋯⟩
⟨⋯ 5 ⋯ 6 ⋯⟩
⟦0,4⟧ ∋ 5,6
1st → 0
⟨? ⋯ 3 (?+1) ⋯ 5 ⋯⟩ (?≠3,2)
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ │ │ │ │ 0 │ │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │ │ │ │ │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ 4 │ │ │ │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 4 │ 1 │ │ │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 1 │ 3 │ │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 3 │ 5 │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 4 │ 1 │ 3 │ 5 │ 6 │ 0 │ 2 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
Proof of 2023-12-07 Q1(m=6)
═══════════════════════════
Notation: if nth -> a, then we write [nth] = a.
Plainly, our first step follows from ✅「1st → 0」. Combining ✅「⟨⋯ Perm(1,4) ⋯⟩」, ✅「⟨⋯ 5 ⋯ 6 ⋯⟩」, and ✅「⟦0,4⟧ ∋ 5,6」, we need to match the following patterns:
(1) ⟨⋯ 4 ⋯ 5 ⋯ 6 ⋯ 0 ⋯⟩
(2) ⟨⋯ 1 ⋯ 5 ⋯ 6 ⋯ 0 ⋯⟩
By 0 = [1st], (1) and (2), we see that [0th] != 0,1,4,5,6. Hence [0th] = 2 or 3. Noting that ✅「⟨? ⋯ 3 (?+1) ⋯ 5 ⋯⟩ (?≠3,2)」 implies 3 is not in corners, we have [0th] = 2.
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│ 1■│ 0■│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
Step 1 │ │ │ │ │ │ 0 │ │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 2 │ │ │ │ │ │ 0 │ 2 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ │ 6 │ 3 │ │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘
(3) Next, we determine the value of [6th]. By ✅「⟨? ⋯ 3 (?+1) ⋯ 5 ⋯⟩ (?≠3,2)」, we have [6th] = 1 or 4.
It is not possible that [6th] = 1, for otherwise the preceding pattern becomes
⟨1 ⋯ 32 ⋯ 5 ⋯⟩
which is a contradiction as we already have 2 = [0th], so that no number can be at the right of 2.
Therefore, back to (3), we have [6th] = 4, and applying ✅「⟨⋯ Perm(1,4) ⋯⟩」, we get
┌───┬───┬───┬───┬───┬───┬───┐
│ 6■│ 5■│4th│3rd│2nd│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ │ │ │ │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 3 │ 4 │ │ │ │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 4 │ 4 │ 1 │ │ │ │ 0 │ 2 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ │ 6 │ 3 │ │ │ 5 │
└───┴───┴───┴───┴───┴───┴───┘
Now ✅「⟨? ⋯ 3 (?+1) ⋯ 5 ⋯⟩ (?≠3,2)」 becomes:
⟨4 ⋯ 35 ⋯⟩
Combining this pattern with (1), we reach
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4■│ 3■│ 2■│1st│0th│▒
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒
│ 4 │ 1 │ │ │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 5 │ 4 │ 1 │ 3 │ │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 6 │ 4 │ 1 │ 3 │ 5 │ │ 0 │ 2 │▒
├───┼───┼───┼───┼───┼───┼───┤▒
Step 7 │ 4 │ 1 │ 3 │ 5 │ 6 │ 0 │ 2 │▒
└───┴───┴───┴───┴───┴───┴───┘▒
▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ │ │ │ │
└───┴───┴───┴───┴───┴───┴───┘
Q.E.D.
#125034_v2.2