Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ Perm(1,4) ⋯⟩
⟨⋯ 5 ⋯ 6 ⋯⟩
⟦0,4⟧ ∋ 5,6
1st → 0
⟨? ⋯ 3 (?+1) ⋯ 5 ⋯⟩ (?≠3,2)
#125034_v2.2
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 4 │ │ │ │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 4 │ 1 │ │ │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ 1 │ 3 │ │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 1 │ 3 │ 5 │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 1 │ 3 │ 5 │ 6 │ 0 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-12-07 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, our first step follows from ✅「1st → 0」. Combining ✅「⟨⋯ Perm(1,4) ⋯⟩」, ✅「⟨⋯ 5 ⋯ 6 ⋯⟩」, and ✅「⟦0,4⟧ ∋ 5,6」, we need to match the following patterns: (1) ⟨⋯ 4 ⋯ 5 ⋯ 6 ⋯ 0 ⋯⟩ (2) ⟨⋯ 1 ⋯ 5 ⋯ 6 ⋯ 0 ⋯⟩ By 0 = [1st], (1) and (2), we see that [0th] != 0,1,4,5,6. Hence [0th] = 2 or 3. Noting that ✅「⟨? ⋯ 3 (?+1) ⋯ 5 ⋯⟩ (?≠3,2)」 implies 3 is not in corners, we have [0th] = 2. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│ 1■│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ │ │ │ 0 │ │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ │ │ │ │ 0 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ (3) Next, we determine the value of [6th]. By ✅「⟨? ⋯ 3 (?+1) ⋯ 5 ⋯⟩ (?≠3,2)」, we have [6th] = 1 or 4. It is not possible that [6th] = 1, for otherwise the preceding pattern becomes ⟨1 ⋯ 32 ⋯ 5 ⋯⟩ which is a contradiction as we already have 2 = [0th], so that no number can be at the right of 2. Therefore, back to (3), we have [6th] = 4, and applying ✅「⟨⋯ Perm(1,4) ⋯⟩」, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│ 5■│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ │ │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 3 │ 4 │ │ │ │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 4 │ 4 │ 1 │ │ │ │ 0 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ 6 │ 3 │ │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Now ✅「⟨? ⋯ 3 (?+1) ⋯ 5 ⋯⟩ (?≠3,2)」 becomes: ⟨4 ⋯ 35 ⋯⟩ Combining this pattern with (1), we reach ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│ 3■│ 2■│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 4 │ 1 │ │ │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 5 │ 4 │ 1 │ 3 │ │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 6 │ 4 │ 1 │ 3 │ 5 │ │ 0 │ 2 │▒ ├───┼───┼───┼───┼───┼───┼───┤▒ Step 7 │ 4 │ 1 │ 3 │ 5 │ 6 │ 0 │ 2 │▒ └───┴───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
No comments:
Post a Comment