Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ Perm(3,4,5) ⋯⟩
⟦1,4⟧ ∋ 0,3
3rd → a, 0th → b, ab=0
Jump(2,4) = 2
----- Information -----
🔲 「⟨⋯ Perm(3,4,5) ⋯⟩」
3,4,5 are adjacent.
144 permutations match this pattern.
Examples: ⟨345201⟩, ⟨345102⟩, ⟨102453⟩.
🔲 「⟦1,4⟧ ∋ 0,3」
The closed interval given by 1 and 4 contains 0, 3.
120 permutations match this pattern.
Examples: ⟨150342⟩, ⟨153042⟩, ⟨453012⟩.
🔲 「3rd → a, 0th → b, ab=0」
240 permutations match this pattern.
Examples: ⟨350142⟩, ⟨450321⟩, ⟨320541⟩.
🔲 「Jump(2,4) = 2」
There are 2 numbers between 2 and 4.
144 permutations match this pattern.
Examples: ⟨523041⟩, ⟨215430⟩, ⟨230451⟩.
#125034_v2.2
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 0 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 2 │ 0 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ 1 │ 2 │ 0 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 2 │ 0 │ │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 2 │ 0 │ 3 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 2 │ 0 │ 3 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ Proof of 2023-11-22 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. By ✅「3rd → a, 0th → b, ab=0」, we have 0 = [3rd] or [0th]. Since ✅「⟦1,4⟧ ∋ 0,3」 implies that 0 is not in corners, we have 0 = [3rd]. ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3■│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ Step 1 │ │ │ 0 │ │ │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 5 │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ To match ✅「⟨⋯ Perm(3,4,5) ⋯⟩」, we need 3,4,5 to be adjacent, so we have ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ (1) │ ▬ │ ▬ │ 0 │ ▲ │ ▲ │ ▲ │ └───┴───┴───┴───┴───┴───┘ where "▬" are occupied by 1,2 and "▲" are occupied by 3,4,5. (2) In particular, we have 2 = [5th] or [4th]. If 2 = [5th], then it follows from ✅「Jump(2,4) = 2」 that 4 = [2nd]: ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│ 2■│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 2 │ │ 0 │ │ │ │ ├───┼───┼───┼───┼───┼───┤ │ 2 │ │ 0 │ 4 │ │ │ └───┴───┴───┴───┴───┴───┘ But then we would never match ✅「⟦1,4⟧ ∋ 0,3」, which is a contradiction. Hence, back to (2), we have 2 = [4th] as our next step. ┌───┬───┬───┬───┬───┬───┐ │5th│ 4■│3rd│2nd│1st│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ │ 0 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 2 │ │ 2 │ 0 │ │ │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ 5 │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ Using (1) and ✅「Jump(2,4) = 2」, we find the positions of 1 and 4 as well: ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│2nd│ 1■│0th│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ │ 2 │ 0 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 3 │ 1 │ 2 │ 0 │ │ │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 4 │ 1 │ 2 │ 0 │ │ 4 │ │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ 5 │ │ 3 │ │ └───┴───┴───┴───┴───┴───┘ Lastly, to match ✅「⟦1,4⟧ ∋ 0,3」, 3 has to be at the left of 4. We finish by ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│ 2■│1st│ 0■│▒ ╞═══╪═══╪═══╪═══╪═══╪═══╡▒ │ 1 │ 2 │ 0 │ │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 5 │ 1 │ 2 │ 0 │ 3 │ 4 │ │▒ ├───┼───┼───┼───┼───┼───┤▒ Step 6 │ 1 │ 2 │ 0 │ 3 │ 4 │ 5 │▒ └───┴───┴───┴───┴───┴───┘▒ ▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒▒ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.2
what does ∾ mean?
ReplyDeleteThanks for your interest! Sorry that I did not notice your comment in time.
DeleteIn the game, the notation "∾" is related to the cycle decomposition of a permutation. A permutation can be decomposed into cycles. For example, ⟨125034⟩ has two cycles: (135) and (420), as (1st→3, 3rd→5, 5th→1) and (4th→2, 2nd→0, 0th→4).
So, in the game, pattern "1 ∾ 2 ∾ 6" means that 1,2,6 are in the same cycle. For instance, permutation ⟨5302164⟩ matches this pattern, because it has two cycles: (65321) and (40), so 1,2,6 are in the same cycle (65321).