Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟨⋯ 4 ⋯ ? ⋯ 1 (?−1)⟩ (?≠1,2)
⟨? 0 ⋯ (?−2) ⋯ 1 ⋯⟩ (?≠2)
⛔Avoid
⟨ ³ʳᵈa ²ⁿᵈb ⁰ᵗʰc ⟩, (abc)₁₀ ≥ 341
#125034_v2.1
┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ │ │ 1 │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ │ 0 │ │ │ 1 │ │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ │ 0 │ │ │ 1 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ │ 0 │ 2 │ │ 1 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 4 │ 0 │ 2 │ │ 1 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 4 │ 0 │ 2 │ 5 │ 1 │ 3 │ └───┴───┴───┴───┴───┴───┘ Proof of 2023-11-21 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, the patterns ✅【⟨⋯ 4 ⋯ ? ⋯ 1 (?−1)⟩ (?≠1,2)】 and ✅【⟨? 0 ⋯ (?−2) ⋯ 1 ⋯⟩ (?≠2)】 require that [1st] = 1 and [4th] = 0: ┌───┬───┬───┬───┬───┬───┐ │5th│ 4■│3rd│2nd│ 1■│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ │ │ │ 1 │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ │ 0 │ │ │ 1 │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ 2 │ 5 │ │ 3 │ 4 │ └───┴───┴───┴───┴───┴───┘ (1) Next, let us make an observation: to avoid ⛔「⟨ ³ʳᵈa ²ⁿᵈb ⁰ᵗʰc ⟩, (abc)₁₀ ≥ 341」, we need [3rd] = 3 or 2. We proceed to determine the value of [0th]. Consider ✅【⟨⋯ 4 ⋯ ? ⋯ 1 (?−1)⟩ (?≠1,2)】. To have ?-1 >= 0, we need ? = 5 or 4 or 3. It is not possible that ? = 5, for otherwise we get ⟨⋯ 4 ⋯ 5 ⋯ 14⟩, which is a contradiction. Therefore, [0th] = 3 or 2. Together with (1), we have ┌───┬───┬───┬───┬───┬───┐ │5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ x │ │ 1 │ y │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ 5 │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ where one of the following holds: (i) (x,y) = (3,2); (ii) (x,y) = (2,3). Case (i) is impossible, for otherwise we cannot avoid ⛔「⟨ ³ʳᵈa ²ⁿᵈb ⁰ᵗʰc ⟩, (abc)₁₀ ≥ 341」. Hence, we have ┌───┬───┬───┬───┬───┬───┐ │5th│4th│ 3■│2nd│1st│ 0■│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ │ │ 1 │ │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ │ 0 │ │ │ 1 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ │ 0 │ 2 │ │ 1 │ 3 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ 5 │ │ │ 4 │ └───┴───┴───┴───┴───┴───┘ Note that since [0th] = 3, the "?" in ✅【⟨? 0 ⋯ (?−2) ⋯ 1 ⋯⟩ (?≠2)】 cannot be 5. Accordingly, we have ┌───┬───┬───┬───┬───┬───┐ │ 5■│4th│3rd│ 2■│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 0 │ 2 │ │ 1 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 4 │ 0 │ 2 │ │ 1 │ 3 │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 4 │ 0 │ 2 │ 5 │ 1 │ 3 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.1
No comments:
Post a Comment