Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
0th → 0|1|2|3
⟨? 2 ⋯ (?+3) ⋯ 6 ⋯⟩ (?≠2)
2nd → a, 0th → b, ab=12
⛔Avoid
⟨⋯ 2 ⋯ 5 ⋯ 0 ⋯ 3 ⋯⟩
#125034_v2.1
┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│4th│3rd│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ 2 │ │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 2 │ │ 2 │ │ │ 4 │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 3 │ │ 2 │ │ │ 4 │ │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 4 │ 1 │ 2 │ │ │ 4 │ │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 5 │ 1 │ 2 │ │ │ 4 │ 6 │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 6 │ 1 │ 2 │ 0 │ │ 4 │ 6 │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 7 │ 1 │ 2 │ 0 │ 5 │ 4 │ 6 │ 3 │ └───┴───┴───┴───┴───┴───┴───┘ Proof of 2023-11-14 Q1(m=6) ═══════════════════════════ Notation: if nth -> a, then we write [nth] = a. Plainly, by ✅【⟨? 2 ⋯ (?+3) ⋯ 6 ⋯⟩ (?≠2)】 and ✅【2nd → a, 0th → b, ab=12】, we have ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│*2 │1st│*0 │ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 2 │ │ │ a │ │ b │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ 3 │ 0 │ 4 │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ where ab = 12. It follows that {a,b} = {3,4}. In view of ✅【0th → 0|1|2|3】, we have b = 3 and thus a = 4. ┌───┬───┬───┬───┬───┬───┬───┐ │6th│ 5■│4th│3rd│ 2■│1st│ 0■│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ │ 2 │ │ │ │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 2 │ │ 2 │ │ │ 4 │ │ │ ├───┼───┼───┼───┼───┼───┼───┤ Step 3 │ │ 2 │ │ │ 4 │ │ 3 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ 1 │ │ 6 │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Now we consider the value of ? := [6th] in ✅【⟨? 2 ⋯ (?+3) ⋯ 6 ⋯⟩ (?≠2)】. To have (?+3) <= 6, we need ? <= 3, so ? = 0 or 1. We cannot have ? = 0, for otherwise we need to match ⟨02 ⋯ 3 ⋯ 6 ⋯⟩, which is not possible because we have shown that [0th] = 3. Therefore, we have ? = 1 and ✅【⟨? 2 ⋯ (?+3) ⋯ 6 ⋯⟩ (?≠2)】 becomes ⟨12 ⋯ 4 ⋯ 6 ⋯⟩. As a result, we get ┌───┬───┬───┬───┬───┬───┬───┐ │ 6■│5th│4th│3rd│2nd│ 1■│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ │ 2 │ │ │ 4 │ │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 4 │ 1 │ 2 │ │ │ 4 │ │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 5 │ 1 │ 2 │ │ │ 4 │ 6 │ 3 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ 0 │ │ 5 │ └───┴───┴───┴───┴───┴───┴───┘ Finally, to avoid ⛔「⟨⋯ 2 ⋯ 5 ⋯ 0 ⋯ 3 ⋯⟩」, we finish by ┌───┬───┬───┬───┬───┬───┬───┐ │6th│5th│ 4■│ 3■│2nd│1st│0th│ ╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡ │ 1 │ 2 │ │ │ 4 │ 6 │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 6 │ 1 │ 2 │ 0 │ │ 4 │ 6 │ 3 │ ├───┼───┼───┼───┼───┼───┼───┤ Step 7 │ 1 │ 2 │ 0 │ 5 │ 4 │ 6 │ 3 │ └───┴───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.1
No comments:
Post a Comment