Rearrange the digits in ⟨1263045⟩ to meet the rules below.
⟨6th 5th 4th 3rd 2nd 1st 0th⟩
✅Match
0th → 0|1|2|3
⟨? 2 ⋯ (?+3) ⋯ 6 ⋯⟩ (?≠2)
2nd → a, 0th → b, ab=12
⛔Avoid
⟨⋯ 2 ⋯ 5 ⋯ 0 ⋯ 3 ⋯⟩
#125034_v2.1
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│4th│3rd│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
Step 1 │ │ 2 │ │ │ │ │ │
├───┼───┼───┼───┼───┼───┼───┤
Step 2 │ │ 2 │ │ │ 4 │ │ │
├───┼───┼───┼───┼───┼───┼───┤
Step 3 │ │ 2 │ │ │ 4 │ │ 3 │
├───┼───┼───┼───┼───┼───┼───┤
Step 4 │ 1 │ 2 │ │ │ 4 │ │ 3 │
├───┼───┼───┼───┼───┼───┼───┤
Step 5 │ 1 │ 2 │ │ │ 4 │ 6 │ 3 │
├───┼───┼───┼───┼───┼───┼───┤
Step 6 │ 1 │ 2 │ 0 │ │ 4 │ 6 │ 3 │
├───┼───┼───┼───┼───┼───┼───┤
Step 7 │ 1 │ 2 │ 0 │ 5 │ 4 │ 6 │ 3 │
└───┴───┴───┴───┴───┴───┴───┘
Proof of 2023-11-14 Q1(m=6)
═══════════════════════════
Notation: if nth -> a, then we write [nth] = a.
Plainly, by ✅【⟨? 2 ⋯ (?+3) ⋯ 6 ⋯⟩ (?≠2)】 and ✅【2nd → a, 0th → b, ab=12】, we have
┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5■│4th│3rd│*2 │1st│*0 │
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ │ 2 │ │ │ a │ │ b │
└───┴───┴───┴───┴───┴───┴───┘
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ │ 6 │ 3 │ 0 │ 4 │ 5 │
└───┴───┴───┴───┴───┴───┴───┘
where ab = 12. It follows that {a,b} = {3,4}. In view of ✅【0th → 0|1|2|3】, we have b = 3 and thus a = 4.
┌───┬───┬───┬───┬───┬───┬───┐
│6th│ 5■│4th│3rd│ 2■│1st│ 0■│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
Step 1 │ │ 2 │ │ │ │ │ │
├───┼───┼───┼───┼───┼───┼───┤
Step 2 │ │ 2 │ │ │ 4 │ │ │
├───┼───┼───┼───┼───┼───┼───┤
Step 3 │ │ 2 │ │ │ 4 │ │ 3 │
└───┴───┴───┴───┴───┴───┴───┘
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ 1 │ │ 6 │ │ 0 │ │ 5 │
└───┴───┴───┴───┴───┴───┴───┘
Now we consider the value of ? := [6th] in ✅【⟨? 2 ⋯ (?+3) ⋯ 6 ⋯⟩ (?≠2)】. To have (?+3) <= 6, we need ? <= 3, so ? = 0 or 1. We cannot have ? = 0, for otherwise we need to match
⟨02 ⋯ 3 ⋯ 6 ⋯⟩,
which is not possible because we have shown that [0th] = 3.
Therefore, we have ? = 1 and ✅【⟨? 2 ⋯ (?+3) ⋯ 6 ⋯⟩ (?≠2)】 becomes
⟨12 ⋯ 4 ⋯ 6 ⋯⟩.
As a result, we get
┌───┬───┬───┬───┬───┬───┬───┐
│ 6■│5th│4th│3rd│2nd│ 1■│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ │ 2 │ │ │ 4 │ │ 3 │
├───┼───┼───┼───┼───┼───┼───┤
Step 4 │ 1 │ 2 │ │ │ 4 │ │ 3 │
├───┼───┼───┼───┼───┼───┼───┤
Step 5 │ 1 │ 2 │ │ │ 4 │ 6 │ 3 │
└───┴───┴───┴───┴───┴───┴───┘
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ │ 0 │ │ 5 │
└───┴───┴───┴───┴───┴───┴───┘
Finally, to avoid ⛔「⟨⋯ 2 ⋯ 5 ⋯ 0 ⋯ 3 ⋯⟩」, we finish by
┌───┬───┬───┬───┬───┬───┬───┐
│6th│5th│ 4■│ 3■│2nd│1st│0th│
╞═══╪═══╪═══╪═══╪═══╪═══╪═══╡
│ 1 │ 2 │ │ │ 4 │ 6 │ 3 │
├───┼───┼───┼───┼───┼───┼───┤
Step 6 │ 1 │ 2 │ 0 │ │ 4 │ 6 │ 3 │
├───┼───┼───┼───┼───┼───┼───┤
Step 7 │ 1 │ 2 │ 0 │ 5 │ 4 │ 6 │ 3 │
└───┴───┴───┴───┴───┴───┴───┘
--- Idle ---
┌───┬───┬───┬───┬───┬───┬───┐
│ │ │ │ │ │ │ │
└───┴───┴───┴───┴───┴───┴───┘
Q.E.D.
#125034_v2.1