Rearrange the digits in ⟨125034⟩ to meet the rules below.
⟨5th 4th 3rd 2nd 1st 0th⟩
✅Match
⟦4,5⟧ ∋ 0,3
⟨? ⋯ 3 ⋯ (?−2) ⋯⟩ (?≠3,5)
4th → a, 0th → b, |a-b|=2
3rd → a, 0th → b, |a-b|=1
⛔Avoid
⟨⋯ Perm(0,3,4) ⋯⟩
3rd → a, 2nd → b, a+b=2+5n
#125034_v2.0
WR 2023-10-17
✅⚪⚪⚪⚪⚪
✅⚪⚪⚪⚪✅
✅✅⚪⚪⚪✅
✅✅✅⚪⚪✅
✅✅✅✅⚪✅
✅✅✅✅✅✅
#125034_v2.0
┌───┬───┬───┬───┬───┬───┐ │ 5 │ 4 │ 3 │ 2 │ 1 │ 0 │ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ 4 │ │ │ │ │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ 4 │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ 4 │ 0 │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ 4 │ 0 │ 1 │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 4 │ 0 │ 1 │ 3 │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 4 │ 0 │ 1 │ 3 │ 5 │ 2 │ └───┴───┴───┴───┴───┴───┘ Proof of 2023-10-17 WR ══════════════════════ Notation: if nth -> a, then we write [nth] = a. We start with ✅【⟨? ⋯ 3 ⋯ (?−2) ⋯⟩ (?≠3,5)】. We need ?-2≥0, so ?=[5th] can only be 4 or 2. We claim that [5th] = 4. Suppose on the contrary that [5th]=2. Then to match ✅【⟦4,5⟧ ∋ 0,3】, there are three possibilities: ┌───┬───┬───┬───┬───┬───┐ │*5 │ 4 │ 3 │ 2 │ 1 │ 0 │ ╞═══╪═══╪═══╪═══╪═══╪═══╡ (1) │ 2 │ [ │ ● │ ● │ ] │ │ ├───┼───┼───┼───┼───┼───┤ (2) │ 2 │ │ [ │ ● │ ● │ ] │ ├───┼───┼───┼───┼───┼───┤ (3) │ 2 │ [ │ │ │ │ ] │ └───┴───┴───┴───┴───┴───┘ where the brackets indicate 4,5 and the dots are 0,3. But case (1) and (2) would match ⛔「⟨⋯ Perm(0,3,4) ⋯⟩」, while case (3) would not match ✅【4th → a, 0th → b, |a-b|=2】. This shows contradictions and verifies our claim. So, we have ┌───┬───┬───┬───┬───┬───┐ │ 5■│ 4 │ 3 │ 2 │ 1 │ 0 │ ╞═══╪═══╪═══╪═══╪═══╪═══╡ Step 1 │ 4 │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ 2 │ 5 │ 0 │ 3 │ │ └───┴───┴───┴───┴───┴───┘ --------------------------------------- Next, by ✅【⟦4,5⟧ ∋ 0,3】, we see that 0,3 cannot be at the boundary, so [0th]=1|2|5. Note that by ✅【3rd → a, 0th → b, |a-b|=1】, [0th] cannot be 5. (4) We show by contradiction that [0th]=2 . If on the contrary [0th]=1, then ✅【4th → a, 0th → b, |a-b|=2】 gives ┌───┬───┬───┬───┬───┬───┐ │ 5 │ 4▲│*3 │ 2 │ 1 │ 0▲│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ 3 │ x │ │ │ 1 │ └───┴───┴───┴───┴───┴───┘ with x=0|2 by ✅【3rd → a, 0th → b, |a-b|=1】. As x≠0 by ⛔「⟨⋯ Perm(0,3,4) ⋯⟩」, we reach ┌───┬───┬───┬───┬───┬───┐ │ 5 │ 4 │ 3▲│ 2 │ 1 │ 0 │ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ 3 │ 2 │ │ │ 1 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ 5 │ 0 │ │ │ └───┴───┴───┴───┴───┴───┘ It then unavoidably matches ⛔「3rd → a, 2nd → b, a+b=2+5n」, which is a contradiction. So, back to (4), we have ┌───┬───┬───┬───┬───┬───┐ │ 5 │ 4 │ 3 │ 2 │ 1 │ 0■│ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ │ │ │ │ │ ├───┼───┼───┼───┼───┼───┤ Step 2 │ 4 │ │ │ │ │ 2 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ 1 │ │ 5 │ 0 │ 3 │ │ └───┴───┴───┴───┴───┴───┘ --------------------------------------- Now, using ✅【4th → a, 0th → b, |a-b|=2】, we get [4th]=0, and then using ✅【3rd → a, 0th → b, |a-b|=1】 with ⛔「⟨⋯ Perm(0,3,4) ⋯⟩」 in mind, we have [3rd]=1: ┌───┬───┬───┬───┬───┬───┐ │ 5 │ 4■│ 3■│ 2 │ 1 │ 0 │ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 3 │ 4 │ 0 │ │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 4 │ 4 │ 0 │ 1 │ │ │ 2 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ 5 │ │ 3 │ │ └───┴───┴───┴───┴───┴───┘ --------------------------------------- Finally, to match ✅【⟦4,5⟧ ∋ 0,3】, we finish by ┌───┬───┬───┬───┬───┬───┐ │ 5 │ 4 │ 3 │ 2■│ 1■│ 0 │ ╞═══╪═══╪═══╪═══╪═══╪═══╡ │ 4 │ 0 │ 1 │ │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 5 │ 4 │ 0 │ 1 │ 3 │ │ 2 │ ├───┼───┼───┼───┼───┼───┤ Step 6 │ 4 │ 0 │ 1 │ 3 │ 5 │ 2 │ └───┴───┴───┴───┴───┴───┘ --- Idle --- ┌───┬───┬───┬───┬───┬───┐ │ │ │ │ │ │ │ └───┴───┴───┴───┴───┴───┘ Q.E.D. #125034_v2.0
No comments:
Post a Comment